These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28381091)

  • 1. Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in Saccharomyces cerevisiae.
    Hammerl R; Frank O; Hofmann T
    J Agric Food Chem; 2017 Apr; 65(15):3230-3241. PubMed ID: 28381091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine Induced Metabolome Alterations of
    Hammerl R; Frank O; Dietz M; Hirschmann J; Hofmann T
    J Agric Food Chem; 2019 Aug; 67(31):8500-8509. PubMed ID: 31298534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Metabolome Analysis of Penicillium roqueforti by Means of Differential Off-Line LC-NMR.
    Hammerl R; Frank O; Schmittnägel T; Ehrmann MA; Hofmann T
    J Agric Food Chem; 2019 May; 67(18):5135-5146. PubMed ID: 30950274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
    Szeto SS; Reinke SN; Sykes BD; Lemire BD
    J Proteome Res; 2010 Dec; 9(12):6729-39. PubMed ID: 20964315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Metabolic Rewiring of Cancer Metabolism in Humans Using Isotope-Resolved NMR.
    Pichumani K
    Methods Mol Biol; 2019; 2037():169-186. PubMed ID: 31463845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C NMR study of transamination during acetate utilization by Saccharomyces cerevisiae.
    den Hollander JA; Behar KL; Shulman RG
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2693-7. PubMed ID: 7019909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of amounts and (13)C content of metabolites in brain tissue using high- resolution magic angle spinning (13)C NMR spectroscopy.
    Risa O; Melø TM; Sonnewald U
    NMR Biomed; 2009 Apr; 22(3):266-71. PubMed ID: 19012315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.
    Son HS; Hwang GS; Kim KM; Kim EY; van den Berg F; Park WM; Lee CH; Hong YS
    Anal Chem; 2009 Feb; 81(3):1137-45. PubMed ID: 19115855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channeling of TCA cycle intermediates in Saccharomyces cerevisiae.
    Ira ; Sonawat HM
    Indian J Biochem Biophys; 1998 Oct; 35(5):260-5. PubMed ID: 10410458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time metabolome profiling of the metabolic switch between starvation and growth.
    Link H; Fuhrer T; Gerosa L; Zamboni N; Sauer U
    Nat Methods; 2015 Nov; 12(11):1091-7. PubMed ID: 26366986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.
    Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J
    Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation.
    Pinu FR; Edwards PJ; Gardner RC; Villas-Boas SG
    FEMS Yeast Res; 2014 Dec; 14(8):1206-22. PubMed ID: 25345561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress adaptation of Saccharomyces cerevisiae as monitored via metabolites using two-dimensional NMR spectroscopy.
    Kang WY; Kim SH; Chae YK
    FEMS Yeast Res; 2012 Aug; 12(5):608-16. PubMed ID: 22540292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling the metabolome changes caused by cranberry procyanidins in plasma of female rats using (1) H NMR and UHPLC-Q-Orbitrap-HRMS global metabolomics approaches.
    Liu H; Garrett TJ; Tayyari F; Gu L
    Mol Nutr Food Res; 2015 Nov; 59(11):2107-18. PubMed ID: 26264887
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Rona GB; Almeida NP; Santos GC; Fidalgo TK; Almeida FC; Eleutherio EC; Pinheiro AS
    J Cell Biochem; 2019 Apr; 120(4):5377-5385. PubMed ID: 30320908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.
    Lyu X; Ng KR; Lee JL; Mark R; Chen WN
    J Agric Food Chem; 2017 Aug; 65(31):6638-6646. PubMed ID: 28707470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomics in Yeast.
    Caudy AA; Mülleder M; Ralser M
    Cold Spring Harb Protoc; 2017 Sep; 2017(9):pdb.top083576. PubMed ID: 28864573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation.
    Bu X; Sun L; Shang F; Yan G
    PLoS One; 2017; 12(11):e0188385. PubMed ID: 29161329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (1)H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems.
    Szeto SS; Reinke SN; Lemire BD
    J Biomol NMR; 2011 Apr; 49(3-4):245-54. PubMed ID: 21350846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.