BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28381426)

  • 1. Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules.
    Semenova I; Gupta D; Usui T; Hayakawa I; Cowan A; Rodionov V
    Mol Biol Cell; 2017 Jun; 28(11):1418-1425. PubMed ID: 28381426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CK1 activates minus-end-directed transport of membrane organelles along microtubules.
    Ikeda K; Zhapparova O; Brodsky I; Semenova I; Tirnauer JS; Zaliapin I; Rodionov V
    Mol Biol Cell; 2011 Apr; 22(8):1321-9. PubMed ID: 21307338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanophores for microtubule dynamics and motility assays.
    Ikeda K; Semenova I; Zhapparova O; Rodionov V
    Methods Cell Biol; 2010; 97():401-14. PubMed ID: 20719282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of the CLIP-170--dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics.
    Lomakin AJ; Kraikivski P; Semenova I; Ikeda K; Zaliapin I; Tirnauer JS; Akhmanova A; Rodionov V
    Mol Biol Cell; 2011 Nov; 22(21):4029-37. PubMed ID: 21880898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model of dynein-dependent self-organization of microtubule asters.
    Cytrynbaum EN; Rodionov V; Mogilner A
    J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules.
    Vorobjev I; Malikov V; Rodionov V
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10160-5. PubMed ID: 11504928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport.
    Lomakin AJ; Semenova I; Zaliapin I; Kraikivski P; Nadezhdina E; Slepchenko BM; Akhmanova A; Rodionov V
    Dev Cell; 2009 Sep; 17(3):323-33. PubMed ID: 19758557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of microtubule-based transport by MAP4.
    Semenova I; Ikeda K; Resaul K; Kraikivski P; Aguiar M; Gygi S; Zaliapin I; Cowan A; Rodionov V
    Mol Biol Cell; 2014 Oct; 25(20):3119-32. PubMed ID: 25143402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoplasmic dynein nucleates microtubules to organize them into radial arrays in vivo.
    Malikov V; Kashina A; Rodionov V
    Mol Biol Cell; 2004 Jun; 15(6):2742-9. PubMed ID: 15047865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels.
    Rodionov V; Yi J; Kashina A; Oladipo A; Gross SP
    Curr Biol; 2003 Oct; 13(21):1837-47. PubMed ID: 14588239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles.
    Kashina AS; Semenova IV; Ivanov PA; Potekhina ES; Zaliapin I; Rodionov VI
    Curr Biol; 2004 Oct; 14(20):1877-81. PubMed ID: 15498498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells.
    Burakov A; Kovalenko O; Semenova I; Zhapparova O; Nadezhdina E; Rodionov V
    Traffic; 2008 Apr; 9(4):472-80. PubMed ID: 18182007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells.
    Lee YJ; Liu B
    New Phytol; 2019 Jun; 222(4):1705-1718. PubMed ID: 30681146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microtubule-organizing centers in interphase melanophores of Xenopus laevis larvae in vivo.
    Rubina KA; Gulak PV; Smirnova EA; Starodubov SM; Onishchenko GE
    Pigment Cell Res; 1999 Oct; 12(5):295-310. PubMed ID: 10541039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene.
    Gard DL; Affleck D; Error BM
    Dev Biol; 1995 Mar; 168(1):189-201. PubMed ID: 7883073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro.
    Rogers SL; Tint IS; Fanapour PC; Gelfand VI
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3720-5. PubMed ID: 9108044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 2001 Apr; 132(8):1799-808. PubMed ID: 11309252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APC functions at the centrosome to stimulate microtubule growth.
    Lui C; Ashton C; Sharma M; Brocardo MG; Henderson BR
    Int J Biochem Cell Biol; 2016 Jan; 70():39-47. PubMed ID: 26556314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.