BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28381519)

  • 1. Balance between
    Yamashita AMS; Ancillotti MTC; Rangel LP; Fontenele M; Figueiredo-Freitas C; Possidonio AC; Soares CP; Sorenson MM; Mermelstein C; Nogueira L
    Am J Physiol Cell Physiol; 2017 Jul; 313(1):C11-C26. PubMed ID: 28381519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic characterization of the cellular response to nitrosative stress mediated by s-nitrosoglutathione reductase inhibition.
    Foster MW; Yang Z; Gooden DM; Thompson JW; Ball CH; Turner ME; Hou Y; Pi J; Moseley MA; Que LG
    J Proteome Res; 2012 Apr; 11(4):2480-91. PubMed ID: 22390303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronicles of a reductase: Biochemistry, genetics and physio-pathological role of GSNOR.
    Rizza S; Filomeni G
    Free Radic Biol Med; 2017 Sep; 110():19-30. PubMed ID: 28533171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide drives embryonic myogenesis in chicken through the upregulation of myogenic differentiation factors.
    Cazzato D; Assi E; Moscheni C; Brunelli S; De Palma C; Cervia D; Perrotta C; Clementi E
    Exp Cell Res; 2014 Jan; 320(2):269-80. PubMed ID: 24240125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-Aminobenzoyl-S-nitrosoglutathione: A fluorogenic, cell permeable, pseudo-substrate for S-nitrosoglutathione reductase.
    Sun BL; Palmer L; Alam SR; Adekoya I; Brown-Steinke K; Periasamy A; Mutus B
    Free Radic Biol Med; 2017 Jul; 108():445-451. PubMed ID: 28419866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nebivolol Acts as a S-Nitrosoglutathione Reductase Inhibitor: A New Mechanism of Action.
    Jiang H; Polhemus DJ; Islam KN; Torregrossa AC; Li Z; Potts A; Lefer DJ; Bryan NS
    J Cardiovasc Pharmacol Ther; 2016 Sep; 21(5):478-85. PubMed ID: 26746429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of protein kinase C theta contributes to enhanced myogenesis in vitro via IRS1 and ERK1/2 phosphorylation.
    Marino JS; Hinds TD; Potter RA; Ondrus E; Onion JL; Dowling A; McLoughlin TJ; Sanchez ER; Hill JW
    BMC Cell Biol; 2013 Sep; 14():39. PubMed ID: 24053798
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Monteiro HP; Ogata FT
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C131-C133. PubMed ID: 28637676
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation and inhibition of soluble guanylyl cyclase by S-nitrosocysteine: involvement of amino acid transport system L.
    Riego JA; Broniowska KA; Kettenhofen NJ; Hogg N
    Free Radic Biol Med; 2009 Aug; 47(3):269-74. PubMed ID: 19409484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AKR1A1 is a novel mammalian
    Stomberski CT; Anand P; Venetos NM; Hausladen A; Zhou HL; Premont RT; Stamler JS
    J Biol Chem; 2019 Nov; 294(48):18285-18293. PubMed ID: 31649033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation.
    Li J; Zhang Y; Zhang Y; Lü S; Miao Y; Yang J; Huang S; Ma X; Han L; Deng J; Fan F; Liu B; Huo Y; Xu Q; Chen C; Wang X; Feng J
    Redox Biol; 2018 Jul; 17():386-399. PubMed ID: 29860106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide-nitric oxide synthase regulates key maturational events during chondrocyte terminal differentiation.
    Teixeira CC; Ischiropoulos H; Leboy PS; Adams SL; Shapiro IM
    Bone; 2005 Jul; 37(1):37-45. PubMed ID: 15869914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity.
    Moon Y; Cao Y; Zhu J; Xu Y; Balkan W; Buys ES; Diaz F; Kerrick WG; Hare JM; Percival JM
    Antioxid Redox Signal; 2017 Feb; 26(4):165-181. PubMed ID: 27412893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor.
    Beuve A; Wu C; Cui C; Liu T; Jain MR; Huang C; Yan L; Kholodovych V; Li H
    J Proteomics; 2016 Apr; 138():40-7. PubMed ID: 26917471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide/soluble guanylyl cyclase signaling mediates depolarization-induced protection of rat mesencephalic dopaminergic neurons from MPP⁺ cytotoxicity.
    Kurauchi Y; Hisatsune A; Isohama Y; Sawa T; Akaike T; Katsuki H
    Neuroscience; 2013 Feb; 231():206-15. PubMed ID: 23238575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues.
    Tichá T; Lochman J; Činčalová L; Luhová L; Petřivalský M
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):27-33. PubMed ID: 29061305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis.
    Montagna C; Rizza S; Cirotti C; Maiani E; Muscaritoli M; Musarò A; Carrí MT; Ferraro E; Cecconi F; Filomeni G
    Cell Death Dis; 2019 May; 10(5):354. PubMed ID: 31043586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase.
    Sanghani PC; Davis WI; Fears SL; Green SL; Zhai L; Tang Y; Martin E; Bryan NS; Sanghani SP
    J Biol Chem; 2009 Sep; 284(36):24354-62. PubMed ID: 19596685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased nitrosoglutathione reductase activity in hypoxic pulmonary hypertension in mice.
    Wu X; Du L; Xu X; Tan L; Li R
    J Pharmacol Sci; 2010; 113(1):32-40. PubMed ID: 20431245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.