These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912 [TBL] [Abstract][Full Text] [Related]
23. Intramolecular cyclization of in situ generated adducts formed between thioamide dianions and thioformamides leading to generation of 5-amino-2-thiazolines and 5-aminothiazoles, and their fluorescence properties. Murai T; Hori F; Maruyama T Org Lett; 2011 Apr; 13(7):1718-21. PubMed ID: 21384885 [TBL] [Abstract][Full Text] [Related]
24. Formation of 2-Cyano-2-siloxyvinylallenes via Cyanide-Induced Brook Rearrangement in γ-Bromo-α,β,γ,δ-unsaturated Acylsilanes. Ando M; Sasaki M; Miyashita I; Takeda K J Org Chem; 2015 Jan; 80(1):247-55. PubMed ID: 25436988 [TBL] [Abstract][Full Text] [Related]
25. Difluorocarbene-induced [1,2]- and [2,3]-Stevens rearrangement of tertiary amines. Su J; Guo Y; Li C; Song Q Nat Commun; 2024 Jun; 15(1):4794. PubMed ID: 38839757 [TBL] [Abstract][Full Text] [Related]
26. Aryne-Mediated [2,3]-Sigmatropic Rearrangement of Tertiary Allylic Amines. Zhang J; Chen ZX; Du T; Li B; Gu Y; Tian SK Org Lett; 2016 Oct; 18(19):4872-4875. PubMed ID: 27632691 [TBL] [Abstract][Full Text] [Related]
28. Molecular orbital calculations on suspected intermediates in oxidative amine metabolism. Nelson SD; Kollman PA; Trager WF; Rothenberg S J Med Chem; 1973 Sep; 16(9):1034-7. PubMed ID: 4745504 [No Abstract] [Full Text] [Related]
29. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation. Murahashi S; Nakae T; Terai H; Komiya N J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852 [TBL] [Abstract][Full Text] [Related]
30. Detoxication mechanisms. 3. The scope and mechanism of the iron-catalyzed dealkylation of tertiary amine oxides. Ferris JP; Gerwe RD; Gapski GR J Org Chem; 1968 Sep; 33(9):3493-8. PubMed ID: 5742875 [No Abstract] [Full Text] [Related]
31. Copper-catalyzed direct oxidative C-H amination of benzoxazoles with formamides or secondary amines under mild conditions. Li Y; Xie Y; Zhang R; Jin K; Wang X; Duan C J Org Chem; 2011 Jul; 76(13):5444-9. PubMed ID: 21619022 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of N-allylideneamines and their use for the double nucleophilic addition of ketene silyl (thio)acetals and trimethylsilyl cyanide. Mizota I; Matsuda Y; Hachiya I; Shimizu M Org Lett; 2008 Sep; 10(18):3977-80. PubMed ID: 18702497 [TBL] [Abstract][Full Text] [Related]
33. Copper-catalyzed oxidative condensation of α-oxocarboxylic acids with formamides: synthesis of α-ketoamides. Wang H; Guo LN; Duan XH Org Biomol Chem; 2013 Jul; 11(28):4573-6. PubMed ID: 23752930 [TBL] [Abstract][Full Text] [Related]
34. Stereocontrolled construction of seven-membered carbocycles using a combination of Brook rearrangement-mediated [3 + 4] annulation and epoxysilane rearrangement. Nakai Y; Kawahata M; Yamaguchi K; Takeda K J Org Chem; 2007 Feb; 72(4):1379-87. PubMed ID: 17243723 [TBL] [Abstract][Full Text] [Related]
35. Copper-mediated C3-cyanation of indoles by the combination of amine and ammonium. Liu B; Wang J; Zhang B; Sun Y; Wang L; Chen J; Cheng J Chem Commun (Camb); 2014 Mar; 50(18):2315-7. PubMed ID: 24445958 [TBL] [Abstract][Full Text] [Related]
36. Enantioselective alpha-silyl amino acid synthesis by reverse-aza-Brook rearrangement. Liu G; Sieburth SM Org Lett; 2003 Nov; 5(24):4677-9. PubMed ID: 14627413 [TBL] [Abstract][Full Text] [Related]
37. Local probe oxidation of self-assembled monolayers on hydrogen-terminated silicon. Yang M; Wouters D; Giesbers M; Schubert US; Zuilhof H ACS Nano; 2009 Oct; 3(10):2887-900. PubMed ID: 19754133 [TBL] [Abstract][Full Text] [Related]
38. On the radical brook rearrangement. Reactivity of alpha-silyl alcohols, alpha-silyl alcohol nitrite esters, and beta-haloacylsilanes under radical-forming conditions. Paredes MD; Alonso R J Org Chem; 2000 Apr; 65(8):2292-304. PubMed ID: 10789438 [TBL] [Abstract][Full Text] [Related]