These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28381998)

  • 21. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatio⁻Temporal Image Representation of 3D Skeletal Movements for View-Invariant Action Recognition with Deep Convolutional Neural Networks.
    Pham HH; Salmane H; Khoudour L; Crouzil A; Zegers P; Velastin SA
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31022945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration.
    Xu Y; Shidqi K; van Schaik GJ; Bilgic R; Dobrita A; Wang S; Meijer R; Nembhani P; Arjmand C; Martinello P; Gebregiorgis A; Hamdioui S; Detterer P; Traferro S; Konijnenburg M; Vadivel K; Sifalakis M; Tang G; Yousefzadeh A
    Front Neurosci; 2024; 18():1335422. PubMed ID: 38606307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning the representation of instrument images in laparoscopy videos.
    Kletz S; Schoeffmann K; Husslein H
    Healthc Technol Lett; 2019 Dec; 6(6):197-203. PubMed ID: 32038857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal Art Pose Recognition and Interaction With Human Intelligence Enhancement.
    Ma C; Liu Q; Dang Y
    Front Psychol; 2021; 12():769509. PubMed ID: 34819900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks.
    Ge L; Liang H; Yuan J; Thalmann D
    IEEE Trans Pattern Anal Mach Intell; 2019 Apr; 41(4):956-970. PubMed ID: 29993927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully neuromorphic vision and control for autonomous drone flight.
    Paredes-Vallés F; Hagenaars JJ; Dupeyroux J; Stroobants S; Xu Y; de Croon GCHE
    Sci Robot; 2024 May; 9(90):eadi0591. PubMed ID: 38748781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FLGR: Fixed Length Gists Representation Learning for RNN-HMM Hybrid-Based Neuromorphic Continuous Gesture Recognition.
    Chen G; Chen J; Lienen M; Conradt J; Röhrbein F; Knoll AC
    Front Neurosci; 2019; 13():73. PubMed ID: 30809114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motion sensitive network for action recognition in control and decision-making of autonomous systems.
    Gu J; Yi Y; Li Q
    Front Neurosci; 2024; 18():1370024. PubMed ID: 38591065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New Spiking Convolutional Recurrent Neural Network (SCRNN) With Applications to Event-Based Hand Gesture Recognition.
    Xing Y; Di Caterina G; Soraghan J
    Front Neurosci; 2020; 14():590164. PubMed ID: 33324153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition.
    Xi Yin ; Xiaoming Liu
    IEEE Trans Image Process; 2018 Feb; 27(2):964-975. PubMed ID: 29757739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network.
    Dong M; Huang X; Xu B
    PLoS One; 2018; 13(11):e0204596. PubMed ID: 30496179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. REMODEL: Rethinking Deep CNN Models to Detect and Count on a NeuroSynaptic System.
    Shukla R; Lipasti M; Van Essen B; Moody A; Maruyama N
    Front Neurosci; 2019; 13():4. PubMed ID: 30853879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.
    Li K; Príncipe JC
    Front Neurosci; 2018; 12():194. PubMed ID: 29666568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature Representations for Neuromorphic Audio Spike Streams.
    Anumula J; Neil D; Delbruck T; Liu SC
    Front Neurosci; 2018; 12():23. PubMed ID: 29479300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification.
    Albuquerque P; Verlekar TT; Correia PL; Soares LD
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577408
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.