These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28382555)

  • 1. Fitting interrelated datasets: metabolite diffusion and general lineshapes.
    Adalid V; Döring A; Kyathanahally SP; Bolliger CS; Boesch C; Kreis R
    MAGMA; 2017 Oct; 30(5):429-448. PubMed ID: 28382555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterization of metabolite and macromolecule contributions in interrelated MR spectra of human brain using multidimensional modeling.
    Hoefemann M; Bolliger CS; Chong DGQ; van der Veen JW; Kreis R
    NMR Biomed; 2020 Sep; 33(9):e4328. PubMed ID: 32542861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional linear-combination model fitting of magnetic resonance spectra to define the macromolecule baseline using FiTAID, a Fitting Tool for Arrays of Interrelated Datasets.
    Chong DG; Kreis R; Bolliger CS; Boesch C; Slotboom J
    MAGMA; 2011 Jun; 24(3):147-64. PubMed ID: 21424575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of Cramér-Rao minimum variance bounds for the design of magnetic resonance spectroscopy experiments.
    Bolliger CS; Boesch C; Kreis R
    Neuroimage; 2013 Dec; 83():1031-40. PubMed ID: 23933043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals.
    Döring A; Adalid V; Boesch C; Kreis R
    Magn Reson Med; 2018 Dec; 80(6):2326-2338. PubMed ID: 29687927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of linewidth on estimation of metabolic concentration when using water lineshape spectral model fitting for single voxel proton spectroscopy at 7 T.
    Hong D; van Asten JJA; Rankouhi SR; Thielen JW; Norris DG
    J Magn Reson; 2019 Jul; 304():53-61. PubMed ID: 31102923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing acquisition and fitting conditions for
    Hoefemann M; Adalid V; Kreis R
    NMR Biomed; 2019 Nov; 32(11):e4161. PubMed ID: 31410911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of MRI-derived vs. traditional estimations of fatty acid composition from MR spectroscopy signals.
    Nemeth A; Segrestin B; Leporq B; Coum A; Gambarota G; Seyssel K; Laville M; Beuf O; Ratiney H
    NMR Biomed; 2018 Sep; 31(9):e3991. PubMed ID: 30040156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the spectral resolution and spectral fitting of (1) H MRSI data from human calf muscle by the SPREAD technique.
    Dong Z; Zhang Y; Liu F; Duan Y; Kangarlu A; Peterson BS
    NMR Biomed; 2014 Nov; 27(11):1325-32. PubMed ID: 25199787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of MRS data in the frequency domain using a wavelet filter, an approximated Voigt lineshape model and prior knowledge.
    Gillies P; Marshall I; Asplund M; Winkler P; Higinbotham J
    NMR Biomed; 2006 Aug; 19(5):617-26. PubMed ID: 16927392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which prior knowledge? Quantification of in vivo brain 13C MR spectra following 13C glucose infusion using AMARES.
    Lanz B; Duarte JM; Kunz N; Mlynárik V; Gruetter R; Cudalbu C
    Magn Reson Med; 2013 Jun; 69(6):1512-22. PubMed ID: 22886985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of strong baseline contributions in 1H MR spectra.
    Soher BJ; Young K; Maudsley AA
    Magn Reson Med; 2001 Jun; 45(6):966-72. PubMed ID: 11378873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward quantitative short-echo-time in vivo proton MR spectroscopy without water suppression.
    Dong Z; Dreher W; Leibfritz D
    Magn Reson Med; 2006 Jun; 55(6):1441-6. PubMed ID: 16598735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting.
    de Graaf AA; Bovée WM
    Magn Reson Med; 1990 Aug; 15(2):305-19. PubMed ID: 1975420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different quantification algorithms may lead to different results: a comparison using proton MRS lipid signals.
    Mosconi E; Sima DM; Osorio Garcia MI; Fontanella M; Fiorini S; Van Huffel S; Marzola P
    NMR Biomed; 2014 Apr; 27(4):431-43. PubMed ID: 24493129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Voigt lineshape for quantification of in vivo 1H spectra.
    Marshall I; Higinbotham J; Bruce S; Freise A
    Magn Reson Med; 1997 May; 37(5):651-7. PubMed ID: 9126938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting.
    Hofmann L; Slotboom J; Jung B; Maloca P; Boesch C; Kreis R
    Magn Reson Med; 2002 Sep; 48(3):440-53. PubMed ID: 12210908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular background signal and non-Gaussian metabolite diffusion determined in human brain using ultra-high diffusion weighting.
    Şimşek K; Döring A; Pampel A; Möller HE; Kreis R
    Magn Reson Med; 2022 Nov; 88(5):1962-1977. PubMed ID: 35803740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral lineshape determination by self-deconvolution.
    Maudsley AA
    J Magn Reson B; 1995 Jan; 106(1):47-57. PubMed ID: 7850173
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.