These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28382726)

  • 21. Free-breathing combined three-dimensional phase sensitive late gadolinium enhancement and T1 mapping for myocardial tissue characterization.
    Weingärtner S; Akçakaya M; Roujol S; Basha T; Tschabrunn C; Berg S; Anter E; Nezafat R
    Magn Reson Med; 2015 Oct; 74(4):1032-41. PubMed ID: 25324205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free breathing three-dimensional late gadolinium enhancement cardiovascular magnetic resonance using outer volume suppressed projection navigators.
    Menon RG; Miller GW; Jeudy J; Rajagopalan S; Shin T
    Magn Reson Med; 2017 Apr; 77(4):1533-1543. PubMed ID: 27122450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dual flip angle 3D bSSFP magnetization transfer-like method to differentiate between recent and old myocardial infarction.
    Germain P; El Ghannudi S; Labani A; Jeung MY; Gangi A; Ohlmann P; Roy C
    J Magn Reson Imaging; 2018 Mar; 47(3):798-808. PubMed ID: 28727209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability.
    Weingärtner S; Akçakaya M; Basha T; Kissinger KV; Goddu B; Berg S; Manning WJ; Nezafat R
    Magn Reson Med; 2014 Mar; 71(3):1024-34. PubMed ID: 23650078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar.
    Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP
    J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy: comparison of diagnostic performance in myocardial fibrosis between gadobutrol and gadopentetate dimeglumine.
    Liu D; Ma X; Liu J; Zhao L; Chen H; Xu L; Sun Z; Fan Z
    Int J Cardiovasc Imaging; 2017 Aug; 33(8):1191-1200. PubMed ID: 28289991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional High-Resolution Dark-Blood Late Gadolinium Enhancement Imaging for Improved Atrial Scar Evaluation.
    Si D; Wu Y; Xiao J; Qin X; Guo R; Liu B; Ning Z; Yin J; Gao P; Liu Y; Yang D; Cheng K; Chen T; Cheng Z; Lin X; Fang Q; Herzka DA; Ding H
    Radiology; 2023 Jun; 307(5):e222032. PubMed ID: 37278633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods.
    Pop M; Ghugre NR; Ramanan V; Morikawa L; Stanisz G; Dick AJ; Wright GA
    Phys Med Biol; 2013 Aug; 58(15):5009-28. PubMed ID: 23833042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myocardial Scar Detection Using High-Resolution Free-Breathing 3D Dark-Blood and Standard Breath-Holding 2D Bright-Blood Late Gadolinium Enhancement MRI: A Comparison of Observer Confidence.
    Nies HMJM; Martens B; Gommers S; Bijvoet GP; Wildberger JE; Ter Bekke RMA; Holtackers RJ; Mihl C
    Top Magn Reson Imaging; 2023 Jun; 32(3):27-32. PubMed ID: 37058709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging.
    Nies HMJM; Gommers S; Bijvoet GP; Heckman LIB; Prinzen FW; Vogel G; Van De Heyning CM; Chiribiri A; Wildberger JE; Mihl C; Holtackers RJ
    Eur Heart J Cardiovasc Imaging; 2023 Feb; 24(3):364-372. PubMed ID: 35723673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T
    Sridi S; Nuñez-Garcia M; Sermesant M; Maillot A; Hamrani DE; Magat J; Naulin J; Laurent F; Montaudon M; Jaïs P; Stuber M; Cochet H; Bustin A
    Diagn Interv Imaging; 2022 Dec; 103(12):607-617. PubMed ID: 35961843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of acute edema in the left atrial myocardium after radiofrequency ablation: Application of a novel high-resolution 3-dimensional magnetic resonance imaging sequence.
    Zghaib T; Malayeri AA; Ipek EG; Habibi M; Huang D; Balouch MA; Bluemke DA; Calkins H; Nazarian S; Zimmerman SL
    Heart Rhythm; 2018 Aug; 15(8):1189-1197. PubMed ID: 29530833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging.
    Milotta G; Munoz C; Kunze KP; Neji R; Figliozzi S; Chiribiri A; Hajhosseiny R; Masci PG; Prieto C; Botnar RM
    J Cardiovasc Magn Reson; 2021 May; 23(1):62. PubMed ID: 34024276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time.
    Gassenmaier S; van der Geest RJ; Schoepf UJ; Suranyi P; Rehwald WG; De Cecco CN; Mastrodicasa D; Albrecht MH; De Santis D; Lesslie VW; Ruzsics B; Varga-Szemes A
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):921-929. PubMed ID: 29305739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional phase-sensitive inversion recovery sequencing in the evaluation of left ventricular myocardial scars in ischemic and non-ischemic cardiomyopathy: comparison to three-dimensional inversion recovery sequencing.
    Kido T; Kido T; Nakamura M; Kawaguchi N; Nishiyama Y; Ogimoto A; Miyagawa M; Mochizuki T
    Eur J Radiol; 2014 Dec; 83(12):2159-2166. PubMed ID: 25311877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact of dark-blood versus conventional bright-blood late gadolinium enhancement on the myocardial ischemic burden.
    Franks R; Holtackers RJ; Alskaf E; Nazir MS; Clapp B; Wildberger JE; Perera D; Plein S; Chiribiri A
    Eur J Radiol; 2021 Nov; 144():109947. PubMed ID: 34700091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical evaluation of three-dimensional late enhancement MRI.
    Bratis K; Henningsson M; Grigoratos C; Omodarme MD; Chasapides K; Botnar R; Nagel E
    J Magn Reson Imaging; 2017 Jun; 45(6):1675-1683. PubMed ID: 27801994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cine and late gadolinium enhancement MRI registration and automated myocardial infarct heterogeneity quantification.
    Guo F; Krahn PRP; Escartin T; Roifman I; Wright G
    Magn Reson Med; 2021 May; 85(5):2842-2855. PubMed ID: 33226667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Quantification of Myocardium Scar in Late Gadolinium Enhancement Images: Deep Learning Based Image Fusion Approach.
    Fahmy AS; Rowin EJ; Chan RH; Manning WJ; Maron MS; Nezafat R
    J Magn Reson Imaging; 2021 Jul; 54(1):303-312. PubMed ID: 33599043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.