These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle. Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787 [TBL] [Abstract][Full Text] [Related]
3. Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Freiman A; Shandalov Y; Rozenfeld D; Shor E; Segal S; Ben-David D; Meretzki S; Egozi D; Levenberg S Stem Cell Res Ther; 2016 Jan; 7():5. PubMed ID: 26753517 [TBL] [Abstract][Full Text] [Related]
4. An engineered muscle flap for reconstruction of large soft tissue defects. Shandalov Y; Egozi D; Koffler J; Dado-Rosenfeld D; Ben-Shimol D; Freiman A; Shor E; Kabala A; Levenberg S Proc Natl Acad Sci U S A; 2014 Apr; 111(16):6010-5. PubMed ID: 24711414 [TBL] [Abstract][Full Text] [Related]
6. A method for constructing vascularized muscle flap. Shandalov Y; Egozi D; Freiman A; Rosenfeld D; Levenberg S Methods; 2015 Aug; 84():70-5. PubMed ID: 25843607 [TBL] [Abstract][Full Text] [Related]
7. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Kamat P; Frueh FS; McLuckie M; Sanchez-Macedo N; Wolint P; Lindenblatt N; Plock JA; Calcagni M; Buschmann J Cytotherapy; 2020 Aug; 22(8):400-411. PubMed ID: 32507607 [TBL] [Abstract][Full Text] [Related]
8. Tissue engineered vascularized periosteal flap enriched with MSC/EPCs for the treatment of large bone defects in rats. Nau C; Henrich D; Seebach C; Schröder K; Barker JH; Marzi I; Frank J Int J Mol Med; 2017 Apr; 39(4):907-917. PubMed ID: 28259928 [TBL] [Abstract][Full Text] [Related]
9. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model. Ismail T; Osinga R; Todorov A; Haumer A; Tchang LA; Epple C; Allafi N; Menzi N; Largo RD; Kaempfen A; Martin I; Schaefer DJ; Scherberich A Acta Biomater; 2017 Nov; 63():236-245. PubMed ID: 28893630 [TBL] [Abstract][Full Text] [Related]
10. Microvascular Fragments: More Than Just Natural Vascularization Units. Laschke MW; Später T; Menger MD Trends Biotechnol; 2021 Jan; 39(1):24-33. PubMed ID: 32593437 [TBL] [Abstract][Full Text] [Related]
11. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. Kayabolen A; Keskin D; Aykan A; Karslıoglu Y; Zor F; Tezcaner A Biomed Mater; 2017 Jun; 12(3):035007. PubMed ID: 28361795 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of vascularized and scaffold-free bone tissue using endothelial and osteogenic cells differentiated from bone marrow derived mesenchymal stem cells. Xu M; Li J; Liu X; Long S; Shen Y; Li Q; Ren L; Ma D Tissue Cell; 2019 Dec; 61():21-29. PubMed ID: 31759403 [TBL] [Abstract][Full Text] [Related]
13. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Müller AM; Mehrkens A; Schäfer DJ; Jaquiery C; Güven S; Lehmicke M; Martinetti R; Farhadi I; Jakob M; Scherberich A; Martin I Eur Cell Mater; 2010 Mar; 19():127-35. PubMed ID: 20198567 [TBL] [Abstract][Full Text] [Related]
14. Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Epple C; Haumer A; Ismail T; Lunger A; Scherberich A; Schaefer DJ; Martin I Biomaterials; 2019 Feb; 192():118-127. PubMed ID: 30448696 [TBL] [Abstract][Full Text] [Related]
15. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Qi D; Wu S; Kuss MA; Shi W; Chung S; Deegan PT; Kamenskiy A; He Y; Duan B Acta Biomater; 2018 Jul; 74():131-142. PubMed ID: 29842971 [TBL] [Abstract][Full Text] [Related]
16. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. Shah AR; Cornejo A; Guda T; Sahar DE; Stephenson SM; Chang S; Krishnegowda NK; Sharma R; Wang HT J Craniofac Surg; 2014 Jul; 25(4):1504-9. PubMed ID: 24943502 [TBL] [Abstract][Full Text] [Related]
18. Isolation of Murine Adipose Tissue-derived Microvascular Fragments as Vascularization Units for Tissue Engineering. Frueh FS; Später T; Scheuer C; Menger MD; Laschke MW J Vis Exp; 2017 Apr; (122):. PubMed ID: 28518106 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Laschke MW; Schank TE; Scheuer C; Kleer S; Schuler S; Metzger W; Eglin D; Alini M; Menger MD Acta Biomater; 2013 Jun; 9(6):6876-84. PubMed ID: 23415749 [TBL] [Abstract][Full Text] [Related]
20. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]