These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28382777)

  • 21. Heterogeneity within order in crystals of a porous metal-organic framework.
    Choi KM; Jeon HJ; Kang JK; Yaghi OM
    J Am Chem Soc; 2011 Aug; 133(31):11920-3. PubMed ID: 21749096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of volatile components extracted from the peels of four different Chinese pomelos using TDS-GC-MS.
    Shao Q; Liu H; Zhang A; Wan Y; Hu R; Li M
    J Sci Food Agric; 2014 Dec; 94(15):3248-54. PubMed ID: 24683164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.
    Li Z; Zhao Q; Fan W; Zhan J
    Nanoscale; 2011 Apr; 3(4):1646-52. PubMed ID: 21279215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Simultaneous determination of 31 volatile organic compounds in decorated rooms by two-stage thermal desorption-capillary gas chromatography].
    Dong X; Chang J; Li Y; Wang Q; Wang G; Tang Z; Xun D
    Wei Sheng Yan Jiu; 2011 Jan; 40(1):115-9. PubMed ID: 21434329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New graphene fiber coating for volatile organic compounds analysis.
    Zhang G; Guo X; Wang S; Wang X; Zhou Y; Xu H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():128-31. PubMed ID: 25171504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure determination of microbial metabolites by the crystalline sponge method.
    Inokuma Y; Ukegawa T; Hoshino M; Fujita M
    Chem Sci; 2016 Jun; 7(6):3910-3913. PubMed ID: 30155035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Where is the Oxygen? Structural Analysis of α-Humulene Oxidation Products by the Crystalline Sponge Method.
    Zigon N; Hoshino M; Yoshioka S; Inokuma Y; Fujita M
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):9033-7. PubMed ID: 26072708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A soft copper(II) porous coordination polymer with unprecedented aqua bridge and selective adsorption properties.
    Quartapelle Procopio E; Fukushima T; Barea E; Navarro JA; Horike S; Kitagawa S
    Chemistry; 2012 Oct; 18(41):13117-25. PubMed ID: 22933314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of trace volatile organic compounds in fish tissues by gas chromatography.
    Murray DA; Lockhart WL
    J Assoc Off Anal Chem; 1988; 71(6):1086-9. PubMed ID: 3240957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.
    Hu Y; Lian H; Zhou L; Li G
    Anal Chem; 2015 Jan; 87(1):406-12. PubMed ID: 25435245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-temperature headspace-trap gas chromatography with mass spectrometry for the determination of trace volatile compounds from the fruit of Lycium barbarum L.
    Chen F; Su Y; Zhang F; Guo Y
    J Sep Sci; 2015 Feb; 38(4):670-6. PubMed ID: 25504591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Research on determination of total volatile organic sulfur compounds in the atmosphere].
    Wang YJ; Zheng XL; He Y; Zhang D; Wang BD
    Huan Jing Ke Xue; 2011 Dec; 32(12):3617-22. PubMed ID: 22468528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated and quantitative headspace in-tube extraction for the accurate determination of highly volatile compounds from wines and beers.
    Zapata J; Mateo-Vivaracho L; Lopez R; Ferreira V
    J Chromatogr A; 2012 Mar; 1230():1-7. PubMed ID: 22340891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous quantification of polar and non-polar volatile organic compounds in water samples by direct aqueous injection-gas chromatography/mass spectrometry.
    Aeppli C; Berg M; Hofstetter TB; Kipfer R; Schwarzenbach RP
    J Chromatogr A; 2008 Feb; 1181(1-2):116-24. PubMed ID: 18201709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of volatile organic compounds in contaminated air using semipermeable membrane devices.
    Ly-Verdú S; Esteve-Turrillas FA; Pastor A; de la Guardia M
    Talanta; 2010 Mar; 80(5):2041-8. PubMed ID: 20152450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Red Algal Bourbonane Sesquiterpene Synthase Defined by Microgram-Scale NMR-Coupled Crystalline Sponge X-ray Diffraction Analysis.
    Kersten RD; Lee S; Fujita D; Pluskal T; Kram S; Smith JE; Iwai T; Noel JP; Fujita M; Weng JK
    J Am Chem Soc; 2017 Nov; 139(46):16838-16844. PubMed ID: 29083151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds.
    Padial NM; Quartapelle Procopio E; Montoro C; López E; Oltra JE; Colombo V; Maspero A; Masciocchi N; Galli S; Senkovska I; Kaskel S; Barea E; Navarro JA
    Angew Chem Int Ed Engl; 2013 Aug; 52(32):8290-4. PubMed ID: 23804226
    [No Abstract]   [Full Text] [Related]  

  • 38. Porous phosphorescent coordination polymers for oxygen sensing.
    Xie Z; Ma L; deKrafft KE; Jin A; Lin W
    J Am Chem Soc; 2010 Jan; 132(3):922-3. PubMed ID: 20041656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of volatile organic compounds indicative of human presence in the air.
    Kwak J; Geier BA; Fan M; Gogate SA; Rinehardt SA; Watts BS; Grigsby CC; Ott DK
    J Sep Sci; 2015 Jul; 38(14):2463-9. PubMed ID: 25944350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of volatile organic compounds with syndiotactic polystyrene crystalline nanocavities.
    Albunia AR; Oliva P; Grassi A
    J Phys Chem A; 2011 Feb; 115(4):443-52. PubMed ID: 21166401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.