These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 28383180)
1. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Owens AE; Grasso KT; Ziegler CA; Fasan R Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180 [TBL] [Abstract][Full Text] [Related]
2. Directed Evolution of the Schwark DG; Schmitt MA; Fisk JD Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414 [TBL] [Abstract][Full Text] [Related]
3. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast. Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255 [TBL] [Abstract][Full Text] [Related]
4. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Wan W; Tharp JM; Liu WR Biochim Biophys Acta; 2014 Jun; 1844(6):1059-70. PubMed ID: 24631543 [TBL] [Abstract][Full Text] [Related]
5. Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains. Koch NG; Goettig P; Rappsilber J; Budisa N Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681855 [TBL] [Abstract][Full Text] [Related]
6. Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids. Schmidt MJ; Summerer D Methods Mol Biol; 2018; 1728():97-111. PubMed ID: 29404992 [TBL] [Abstract][Full Text] [Related]
7. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. Pott M; Schmidt MJ; Summerer D ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570 [TBL] [Abstract][Full Text] [Related]
9. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. Baumann T; Exner M; Budisa N Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132 [TBL] [Abstract][Full Text] [Related]
10. PylSn and the homologous N-terminal domain of pyrrolysyl-tRNA synthetase bind the tRNA that is essential for the genetic encoding of pyrrolysine. Jiang R; Krzycki JA J Biol Chem; 2012 Sep; 287(39):32738-46. PubMed ID: 22851181 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast. Stieglitz JT; Van Deventer JA ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554 [TBL] [Abstract][Full Text] [Related]
12. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Polycarpo C; Ambrogelly A; Bérubé A; Winbush SM; McCloskey JA; Crain PF; Wood JL; Söll D Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12450-4. PubMed ID: 15314242 [TBL] [Abstract][Full Text] [Related]
13. The pyrrolysine translational machinery as a genetic-code expansion tool. Fekner T; Chan MK Curr Opin Chem Biol; 2011 Jun; 15(3):387-91. PubMed ID: 21507706 [TBL] [Abstract][Full Text] [Related]
14. Exploration of Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129 [TBL] [Abstract][Full Text] [Related]
15. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion. Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698 [TBL] [Abstract][Full Text] [Related]
17. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code. Nehring S; Budisa N; Wiltschi B PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661 [TBL] [Abstract][Full Text] [Related]
18. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Srinivasan G; James CM; Krzycki JA Science; 2002 May; 296(5572):1459-62. PubMed ID: 12029131 [TBL] [Abstract][Full Text] [Related]