BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28383246)

  • 1. Smartphone-Enabled Colorimetric Trinitrotoluene Detection Using Amine-Trapped Polydimethylsiloxane Membranes.
    Tang N; Mu L; Qu H; Wang Y; Duan X; Reed MA
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14445-14452. PubMed ID: 28383246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.
    Zhang D; Jiang J; Chen J; Zhang Q; Lu Y; Yao Y; Li S; Logan Liu G; Liu Q
    Biosens Bioelectron; 2015 Aug; 70():81-8. PubMed ID: 25796040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically modified mesoporous wood: a versatile sensor for visual colorimetric detection of trinitrotoluene in water, air, and soil by smartphone camera.
    Zhang Y; Cai Y; Dong F; Bian L; Li H; Wang J; Du J; Qi X; He Y
    Anal Bioanal Chem; 2019 Dec; 411(30):8063-8071. PubMed ID: 31768592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles.
    Lin D; Liu H; Qian K; Zhou X; Yang L; Liu J
    Anal Chim Acta; 2012 Sep; 744():92-8. PubMed ID: 22935379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.
    Wang X; Chang TW; Lin G; Gartia MR; Liu GL
    Anal Chem; 2017 Jan; 89(1):611-615. PubMed ID: 27976865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.
    Idros N; Ho MY; Pivnenko M; Qasim MM; Xu H; Gu Z; Chu D
    Sensors (Basel); 2015 Jun; 15(6):12891-905. PubMed ID: 26046595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor.
    Erçağ E; Uzer A; Apak R
    Talanta; 2009 May; 78(3):772-80. PubMed ID: 19269427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From children's toy to versatile sensor: One-step doping of Play-Doh with primary amino group for explosive detection both on surfaces and in solution.
    Yang S; Fan W; Cheng H; Gong Z; Wang D; Fan M; Huang B
    Anal Chim Acta; 2020 Sep; 1128():193-202. PubMed ID: 32825903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Colorimetric Detection of Thiosulfate by Using Silver Nanoparticles for Smartphone-Based Analysis.
    Dong C; Wang Z; Zhang Y; Ma X; Iqbal MZ; Miao L; Zhou Z; Shen Z; Wu A
    ACS Sens; 2017 Aug; 2(8):1152-1159. PubMed ID: 28722404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil.
    Choodum A; Kanatharana P; Wongniramaikul W; Daeid NN
    Talanta; 2013 Oct; 115():143-9. PubMed ID: 24054571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.
    Romolo FS; Ferri E; Mirasoli M; D'Elia M; Ripani L; Peluso G; Risoluti R; Maiolini E; Girotti S
    Forensic Sci Int; 2015 Jan; 246():25-30. PubMed ID: 25460104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles.
    Arshad A; Wang H; Bai X; Jiang R; Xu S; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():16-22. PubMed ID: 30077892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.
    Ma Y; Wang L
    Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New portable smartphone-based PDMS microfluidic kit for the simultaneous colorimetric detection of arsenic and mercury.
    Motalebizadeh A; Bagheri H; Asiaei S; Fekrat N; Afkhami A
    RSC Adv; 2018 Jul; 8(48):27091-27100. PubMed ID: 35540017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of 2,4,6-trinitrotoluene.
    Mirasoli M; Buragina A; Dolci LS; Guardigli M; Simoni P; Montoya A; Maiolini E; Girotti S; Roda A
    Anal Chim Acta; 2012 Apr; 721():167-72. PubMed ID: 22405316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-Assisted Sensing of Trinitrotoluene by Optical Array.
    Santonocito R; Tuccitto N; Cantaro V; Carbonaro AB; Pappalardo A; Greco V; Buccilli V; Maida P; Zavattaro D; Sfuncia G; Nicotra G; Maccarrone G; Gulino A; Giuffrida A; Trusso Sfrazzetto G
    ACS Omega; 2022 Oct; 7(42):37122-37132. PubMed ID: 36312398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system.
    Kaiqi Su ; Quchao Zou ; Ning Hu ; Ping Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7720-3. PubMed ID: 26738081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-Enabled Detection Strategies for Portable PCR-Based Diagnostics.
    Priye A; Ugaz VM
    Methods Mol Biol; 2017; 1571():251-266. PubMed ID: 28281261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene.
    Sablok K; Bhalla V; Sharma P; Kaushal R; Chaudhary S; Suri CR
    J Hazard Mater; 2013 Mar; 248-249():322-8. PubMed ID: 23416475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays.
    O'Connor EF; Paterson S; de la Rica R
    Anal Bioanal Chem; 2016 May; 408(13):3389-93. PubMed ID: 26970749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.