BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28383278)

  • 1. Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress.
    Rastogi SK; Raghavan G; Yang G; Cohen-Karni T
    Nano Lett; 2017 May; 17(5):3297-3301. PubMed ID: 28383278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of pristine graphene for neuronal interface.
    Sahni D; Jea A; Mata JA; Marcano DC; Sivaganesan A; Berlin JM; Tatsui CE; Sun Z; Luerssen TG; Meng S; Kent TA; Tour JM
    J Neurosurg Pediatr; 2013 May; 11(5):575-83. PubMed ID: 23473006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells.
    Feng X; Chen L; Guo W; Zhang Y; Lai X; Shao L; Li Y
    Acta Biomater; 2018 Nov; 81():278-292. PubMed ID: 30273743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of crystalline quality on neuronal affinity of pristine graphene.
    Veliev F; Briançon-Marjollet A; Bouchiat V; Delacour C
    Biomaterials; 2016 Apr; 86():33-41. PubMed ID: 26878439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma.
    Yuan YG; Wang YH; Xing HH; Gurunathan S
    Int J Nanomedicine; 2017; 12():5819-5839. PubMed ID: 28860751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies.
    Ryoo SR; Kim YK; Kim MH; Min DH
    ACS Nano; 2010 Nov; 4(11):6587-98. PubMed ID: 20979372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
    Fabbro A; Scaini D; León V; Vázquez E; Cellot G; Privitera G; Lombardi L; Torrisi F; Tomarchio F; Bonaccorso F; Bosi S; Ferrari AC; Ballerini L; Prato M
    ACS Nano; 2016 Jan; 10(1):615-23. PubMed ID: 26700626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent conducting films based on reduced graphene oxide multilayers for biocompatible neuronal interfaces.
    Kim SM; Joo P; Ahn G; Cho IH; Kim DH; Song WK; Kim BS; Yoon MH
    J Biomed Nanotechnol; 2013 Mar; 9(3):403-8. PubMed ID: 23620995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Based Nanomaterials: Potential Tools for Neurorepair.
    Wang Q; Li YH; Jiang WJ; Zhao JG; Xiao BG; Zhang GX; Ma CG
    Curr Pharm Des; 2018; 24(1):56-61. PubMed ID: 28847305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts.
    Lasocka I; Szulc-Dąbrowska L; Skibniewski M; Skibniewska E; Strupinski W; Pasternak I; Kmieć H; Kowalczyk P
    Toxicol In Vitro; 2018 Apr; 48():276-285. PubMed ID: 29409908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures.
    Solanki A; Chueng ST; Yin PT; Kappera R; Chhowalla M; Lee KB
    Adv Mater; 2013 Oct; 25(38):5477-82. PubMed ID: 23824715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.
    Lin F; Du F; Huang J; Chau A; Zhou Y; Duan H; Wang J; Xiong C
    Colloids Surf B Biointerfaces; 2016 Oct; 146():785-93. PubMed ID: 27451366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases.
    Lim MH; Jeung IC; Jeong J; Yoon SJ; Lee SH; Park J; Kang YS; Lee H; Park YJ; Lee HG; Lee SJ; Han BS; Song NW; Lee SC; Kim JS; Bae KH; Min JK
    Acta Biomater; 2016 Dec; 46():191-203. PubMed ID: 27640918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons.
    Bramini M; Sacchetti S; Armirotti A; Rocchi A; Vázquez E; León Castellanos V; Bandiera T; Cesca F; Benfenati F
    ACS Nano; 2016 Jul; 10(7):7154-71. PubMed ID: 27359048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graphene on growth of neuroblastoma cells.
    Park HB; Nam HG; Oh HG; Kim JH; Kim CM; Song KS; Jhee KH
    J Microbiol Biotechnol; 2013 Feb; 23(2):274-7. PubMed ID: 23412072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.
    Mari E; Mardente S; Morgante E; Tafani M; Lococo E; Fico F; Valentini F; Zicari A
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27916824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells.
    Jaworski S; Sawosz E; Grodzik M; Winnicka A; Prasek M; Wierzbicki M; Chwalibog A
    Int J Nanomedicine; 2013; 8():413-20. PubMed ID: 23378763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct patterning and biofunctionalization of a large-area pristine graphene sheet.
    Hong D; Bae K; Park D; Kim H; Hong SP; Kim MH; Lee BS; Ko S; Jeon S; Zheng X; Yun WS; Kim YG; Choi IS; Lee JK
    Chem Asian J; 2015 Mar; 10(3):568-71. PubMed ID: 25488174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent.
    Narayanan KB; Kim HD; Han SS
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110579. PubMed ID: 31689675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.