BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 28383281)

  • 1. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.
    Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS
    Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat.
    Mavrodi OV; Mavrodi DV; Parejko JA; Thomashow LS; Weller DM
    Appl Environ Microbiol; 2012 May; 78(9):3214-20. PubMed ID: 22389379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Characterization, Morphological Characteristics, Virulence, and Geographic Distribution of Rhizoctonia spp. in Washington State.
    Jaaffar AK; Paulitz TC; Schroeder KL; Thomashow LS; Weller DM
    Phytopathology; 2016 May; 106(5):459-73. PubMed ID: 26780436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals.
    Mavrodi DV; Mavrodi OV; Parejko JA; Bonsall RF; Kwak YS; Paulitz TC; Thomashow LS; Weller DM
    Appl Environ Microbiol; 2012 Feb; 78(3):804-12. PubMed ID: 22138981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA).
    Parejko JA; Mavrodi DV; Mavrodi OV; Weller DM; Thomashow LS
    Microb Ecol; 2012 Jul; 64(1):226-41. PubMed ID: 22383119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani.
    Keshavarz-Tohid V; Taheri P; Muller D; Prigent-Combaret C; Vacheron J; Taghavi SM; Tarighi S; Moënne-Loccoz Y
    Res Microbiol; 2017 Oct; 168(8):760-772. PubMed ID: 28851671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a.
    Olorunleke FE; Hua GK; Kieu NP; Ma Z; Höfte M
    Environ Microbiol Rep; 2015 Oct; 7(5):774-81. PubMed ID: 26085277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a.
    D'aes J; Hua GK; De Maeyer K; Pannecoucque J; Forrez I; Ongena M; Dietrich LE; Thomashow LS; Mavrodi DV; Höfte M
    Phytopathology; 2011 Aug; 101(8):996-1004. PubMed ID: 21405991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agroecological factors correlated to soil DNA concentrations of Rhizoctonia in dryland wheat production zones of Washington state, USA.
    Okubara PA; Schroeder KL; Abatzoglou JT; Paulitz TC
    Phytopathology; 2014 Jul; 104(7):683-91. PubMed ID: 24915426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.
    Schroeder KL; Paulitz TC
    Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and Pathogenicity of Rhizoctonia and Rhizoctonia-Like spp. From Pea Crops in the Columbia Basin of Oregon and Washington.
    Sharma-Poudyal D; Paulitz TC; Porter LD; du Toit LJ
    Plant Dis; 2015 May; 99(5):604-613. PubMed ID: 30699678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
    Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH
    Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.
    Asad-Uz-Zaman M; Bhuiyan MR; Khan MA; Alam Bhuiyan MK; Latif MA
    C R Biol; 2015 Feb; 338(2):112-20. PubMed ID: 25595298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops.
    Patel JK; Madaan S; Archana G
    Microbiol Res; 2018 Oct; 215():36-45. PubMed ID: 30172307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of phenazine-1-carboxylic acid gene (phc CD) from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani.
    Padaria JC; Tarafdar A; Raipuria R; Lone SA; Gahlot P; Shakil NA; Kumar J
    J Basic Microbiol; 2016 Sep; 56(9):999-1008. PubMed ID: 27106067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat.
    Bakker PA; Glandorf DC; Viebahn M; Ouwens TW; Smit E; Leeflang P; Wernars K; Thomashow LS; Thomas-Oates JE; van Loon LC
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):617-24. PubMed ID: 12448757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of Antibiotic Biosynthesis Gene-possessing Rhizospheric Fluorescent Pseudomonads in Japan and Their Biocontrol Efficacy.
    Someya N; Kubota M; Takeuchi K; Unno Y; Sakuraoka R; Morohoshi T
    Microbes Environ; 2020; 35(2):. PubMed ID: 32269203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between the root pathogen Rhizoctonia solani AG-8 and acetolactate-synthase-inhibiting herbicides in barley.
    Lee H; Ullrich SE; Burke IC; Yenish J; Paulitz TC
    Pest Manag Sci; 2012 Jun; 68(6):845-52. PubMed ID: 22307918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction.
    Okubara PA; Schroeder KL; Paulitz TC
    Phytopathology; 2008 Jul; 98(7):837-47. PubMed ID: 18943261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity.
    Park GK; Lim JH; Kim SD; Shim SH
    J Microbiol Biotechnol; 2012 Mar; 22(3):326-30. PubMed ID: 22450787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.