These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 28383320)
1. The effects of patterned electrical stimulation combined with voluntary contraction on spinal reciprocal inhibition in healthy individuals. Takahashi Y; Fujiwara T; Yamaguchi T; Kawakami M; Mizuno K; Liu M Neuroreport; 2017 May; 28(8):434-438. PubMed ID: 28383320 [TBL] [Abstract][Full Text] [Related]
2. Voluntary contraction enhances spinal reciprocal inhibition induced by patterned electrical stimulation in patients with stroke. Takahashi Y; Fujiwara T; Yamaguchi T; Matsunaga H; Kawakami M; Honaga K; Mizuno K; Liu M Restor Neurol Neurosci; 2018; 36(1):99-105. PubMed ID: 29439361 [TBL] [Abstract][Full Text] [Related]
3. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Yamaguchi T; Fujiwara T; Tsai YA; Tang SC; Kawakami M; Mizuno K; Kodama M; Masakado Y; Liu M Exp Brain Res; 2016 Jun; 234(6):1469-78. PubMed ID: 26790423 [TBL] [Abstract][Full Text] [Related]
4. Transcranial direct current stimulation modulates the spinal plasticity induced with patterned electrical stimulation. Fujiwara T; Tsuji T; Honaga K; Hase K; Ushiba J; Liu M Clin Neurophysiol; 2011 Sep; 122(9):1834-7. PubMed ID: 21377414 [TBL] [Abstract][Full Text] [Related]
5. The effect of active pedaling combined with electrical stimulation on spinal reciprocal inhibition. Yamaguchi T; Fujiwara T; Saito K; Tanabe S; Muraoka Y; Otaka Y; Osu R; Tsuji T; Hase K; Liu M J Electromyogr Kinesiol; 2013 Feb; 23(1):190-4. PubMed ID: 22959066 [TBL] [Abstract][Full Text] [Related]
6. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans. Perez MA; Field-Fote EC; Floeter MK J Neurosci; 2003 Mar; 23(6):2014-8. PubMed ID: 12657659 [TBL] [Abstract][Full Text] [Related]
7. Post-tetanic potentiation of reciprocal Ia inhibition in human lower limb. Sato T; Tsuboi T; Miyazaki M; Sakamoto K J Electromyogr Kinesiol; 1999 Feb; 9(1):59-66. PubMed ID: 10022562 [TBL] [Abstract][Full Text] [Related]
8. Short-term effect of electrical nerve stimulation on spinal reciprocal inhibition during robot-assisted passive stepping in humans. Obata H; Ogawa T; Kitamura T; Masugi Y; Takahashi M; Kawashima N; Nakazawa K Eur J Neurosci; 2015 Sep; 42(6):2283-8. PubMed ID: 26108136 [TBL] [Abstract][Full Text] [Related]
9. Spinal reciprocal inhibition in the co-contraction of the lower leg depends on muscle activity ratio. Hirabayashi R; Edama M; Kojima S; Ito W; Nakamura E; Kikumoto T; Onishi H Exp Brain Res; 2019 Jun; 237(6):1469-1478. PubMed ID: 30899999 [TBL] [Abstract][Full Text] [Related]
10. H-reflex and reciprocal Ia inhibition after fatiguing isometric voluntary contraction in soleus muscle. Tanino Y; Daikuya S; Nishimori T; Takasaki K; Kanei K; Suzuki T Electromyogr Clin Neurophysiol; 2004 Dec; 44(8):473-6. PubMed ID: 15646004 [TBL] [Abstract][Full Text] [Related]
11. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons. Kubota S; Hirano M; Morishita T; Uehara K; Funase K Neuroreport; 2015 Mar; 26(5):249-53. PubMed ID: 25719751 [TBL] [Abstract][Full Text] [Related]
12. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans. Lavoie BA; Devanne H; Capaday C J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291 [TBL] [Abstract][Full Text] [Related]
13. Modulation of H reflex of pretibial muscles and reciprocal Ia inhibition of soleus muscle during voluntary teeth clenching in humans. Takada Y; Miyahara T; Tanaka T; Ohyama T; Nakamura Y J Neurophysiol; 2000 Apr; 83(4):2063-70. PubMed ID: 10758116 [TBL] [Abstract][Full Text] [Related]
14. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Khaslavskaia S; Sinkjaer T Exp Brain Res; 2005 May; 162(4):497-502. PubMed ID: 15702321 [TBL] [Abstract][Full Text] [Related]
15. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Thompson AK; Doran B; Stein RB Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575 [TBL] [Abstract][Full Text] [Related]
16. Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans. Mrachacz-Kersting N; Geertsen SS; Stevenson AJ; Nielsen JB Exp Brain Res; 2017 May; 235(5):1555-1564. PubMed ID: 28258435 [TBL] [Abstract][Full Text] [Related]
17. Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training. Geertsen SS; Lundbye-Jensen J; Nielsen JB J Appl Physiol (1985); 2008 Sep; 105(3):915-22. PubMed ID: 18583382 [TBL] [Abstract][Full Text] [Related]
18. Short-term effects of electrical nerve stimulation on spinal reciprocal inhibition depend on gait phase during passive stepping. Obata H; Ogawa T; Milosevic M; Kawashima N; Nakazawa K J Electromyogr Kinesiol; 2018 Feb; 38():151-154. PubMed ID: 29288924 [TBL] [Abstract][Full Text] [Related]
19. Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation. Thompson AK; Estabrooks KL; Chong S; Stein RB Neurorehabil Neural Repair; 2009 Feb; 23(2):133-42. PubMed ID: 19023139 [TBL] [Abstract][Full Text] [Related]
20. Effects of a complex balance task on soleus H-reflex and presynaptic inhibition in humans. Kitano K; Tsuruike M; Robertson CT; Kocejal DM Electromyogr Clin Neurophysiol; 2009; 49(5):235-43. PubMed ID: 19694211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]