These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28383488)

  • 41. Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films.
    Kundrata I; Fröhlich K; Vančo L; Mičušík M; Bachmann J
    Beilstein J Nanotechnol; 2019; 10():1443-1451. PubMed ID: 31431856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se
    Hwang S; Larina L; Lee H; Kim S; Choi KS; Jeon C; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20920-20928. PubMed ID: 29806770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liquid atomic layer deposition as emergent technology for the fabrication of thin films.
    Graniel O; Puigmartí-Luis J; Muñoz-Rojas D
    Dalton Trans; 2021 May; 50(19):6373-6381. PubMed ID: 34002750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Si-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Koida T; Taguchi N; Tanaka S; Fons P; Shibata H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31119-31128. PubMed ID: 28829112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ALD Zn(O,S) Thin Films' Interfacial Chemical and Structural Configuration Probed by XAS.
    Dadlani AL; Acharya S; Trejo O; Prinz FB; Torgersen J
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14323-7. PubMed ID: 27223620
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic Layer Deposition of Electron Selective SnO
    Hultqvist A; Aitola K; Sveinbjörnsson K; Saki Z; Larsson F; Törndahl T; Johansson E; Boschloo G; Edoff M
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29707-29716. PubMed ID: 28792724
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-Step Approach for Conformal Chemical Vapor-Phase Deposition of Ultra-Thin Conductive Silver Films.
    Wack S; Lunca Popa P; Adjeroud N; Vergne C; Leturcq R
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36329-36338. PubMed ID: 32666787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Significantly Enhanced Detectivity of CIGS Broadband High-Speed Photodetectors by Grain Size Control and ALD-Al
    Yuan Y; Zhang L; Yan G; Cen G; Liu Y; Zeng L; Zeng C; Zhao C; Hong R; Mai W
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20157-20166. PubMed ID: 31070353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks.
    Meng X; Byun YC; Kim HS; Lee JS; Lucero AT; Cheng L; Kim J
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer.
    Thanihaichelvan M; Loheeswaran S; Balashangar K; Velauthapillai D; Ravirajan P
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atomic layer deposition on dental materials: Processing conditions and surface functionalization to improve physical, chemical, and clinical properties - A review.
    Hashemi Astaneh S; Faverani LP; Sukotjo C; Takoudis CG
    Acta Biomater; 2021 Feb; 121():103-118. PubMed ID: 33227485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics.
    Kim KD; Lim DC; Hu J; Kwon JD; Jeong MG; Seo HO; Lee JY; Jang KY; Lim JH; Lee KH; Jeong Y; Kim YD; Cho S
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8718-23. PubMed ID: 23951998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.
    Cheng Y; Yang QD; Xiao J; Xue Q; Li HW; Guan Z; Yip HL; Tsang SW
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19986-93. PubMed ID: 26280249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for Chemical and Electronic Nonuniformities in the Formation of the Interface of RbF-Treated Cu(In,Ga)Se
    Nicoara N; Kunze T; Jackson P; Hariskos D; Duarte RF; Wilks RG; Witte W; Bär M; Sadewasser S
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44173-44180. PubMed ID: 29178776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significantly Enhancing Response Speed of Self-Powered Cu
    Yan G; Zeng C; Yuan Y; Wang G; Cen G; Zeng L; Zhang L; Fu Y; Zhao C; Hong R; Mai W
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32097-32107. PubMed ID: 31408610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New development of atomic layer deposition: processes, methods and applications.
    Oviroh PO; Akbarzadeh R; Pan D; Coetzee RAM; Jen TC
    Sci Technol Adv Mater; 2019; 20(1):465-496. PubMed ID: 31164953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using fence post designs to speed the atomic layer deposition of optical thin films.
    Willey RR
    Appl Opt; 2008 May; 47(13):C9-12. PubMed ID: 18449278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improvement of Pre-Annealed Cu(In, Ga)Se2 Absorbers for High Efficiency.
    Youn SM; Kim JH; Jeong C
    J Nanosci Nanotechnol; 2016 May; 16(5):5003-7. PubMed ID: 27483860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.
    Kim SH; Joo SY; Jin HS; Kim WB; Park TJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20880-4. PubMed ID: 27467383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance of Graphene-CdS Hybrid Nanocomposite Thin Film for Applications in Cu(In,Ga)Se
    Alhammadi S; Minnam Reddy VR; Gedi S; Park H; Sayed MS; Shim JJ; Kim WK
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.