BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28383662)

  • 1. Phosphorus Taste Involves T1R2 and T1R3.
    Tordoff MG
    Chem Senses; 2017 Jun; 42(5):425-433. PubMed ID: 28383662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heightened avidity for trisodium pyrophosphate in mice lacking Tas1r3.
    Tordoff MG; Aleman TR; McCaughey SA
    Chem Senses; 2015 Jan; 40(1):53-9. PubMed ID: 25452580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to Polycose: implications for saccharide taste receptors in mice.
    Treesukosol Y; Blonde GD; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R855-65. PubMed ID: 19158407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice.
    Sclafani A; Glass DS; Margolskee RF; Glendinning JI
    Am J Physiol Regul Integr Comp Physiol; 2010 Dec; 299(6):R1643-50. PubMed ID: 20926763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal.
    Treesukosol Y; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2012 Jul; 303(2):R218-35. PubMed ID: 22621968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.
    Glendinning JI; Stano S; Holter M; Azenkot T; Goldman O; Margolskee RF; Vasselli JR; Sclafani A
    Am J Physiol Regul Integr Comp Physiol; 2015 Sep; 309(5):R552-60. PubMed ID: 26157055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T1R3 taste receptor is critical for sucrose but not Polycose taste.
    Zukerman S; Glendinning JI; Margolskee RF; Sclafani A
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R866-76. PubMed ID: 19091911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral evidence for a glucose polymer taste receptor that is independent of the T1R2+3 heterodimer in a mouse model.
    Treesukosol Y; Smith KR; Spector AC
    J Neurosci; 2011 Sep; 31(38):13527-34. PubMed ID: 21940444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of the presence of a 5'-ribonucleotide and the contribution of the T1R1 + T1R3 heterodimer and an additional low-affinity receptor in the taste detection of L-glutamate as assessed psychophysically.
    Smith KR; Spector AC
    J Neurosci; 2014 Sep; 34(39):13234-45. PubMed ID: 25253867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice.
    Delay ER; Hernandez NP; Bromley K; Margolskee RF
    Chem Senses; 2006 May; 31(4):351-7. PubMed ID: 16495435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of T1r3 and Trpm5 on carbohydrate preference and acceptance in C57BL/6 mice.
    Zukerman S; Glendinning JI; Margolskee RF; Sclafani A
    Chem Senses; 2013 Jun; 38(5):421-37. PubMed ID: 23547138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taste and acceptance of pyrophosphates by rats and mice.
    McCaughey SA; Giza BK; Tordoff MG
    Am J Physiol Regul Integr Comp Physiol; 2007 Jun; 292(6):R2159-67. PubMed ID: 17332156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor.
    Blonde GD; Travers SP; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2018 Jun; 314(6):R802-R810. PubMed ID: 29443544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual Glucose Taste in T1R3 Knockout but not TRPM5 Knockout Mice.
    Sclafani A; Zukerman S; Ackroff K
    Physiol Behav; 2020 Aug; 222():112945. PubMed ID: 32417232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice.
    Kalyanasundar B; Blonde GD; Spector AC; Travers SP
    J Neurophysiol; 2020 Feb; 123(2):843-859. PubMed ID: 31913749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.
    Blonde GD; Spector AC
    Chem Senses; 2017 Jun; 42(5):393-404. PubMed ID: 28334294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice.
    Schier LA; Inui-Yamamoto C; Blonde GD; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2019 May; 316(5):R448-R462. PubMed ID: 30624973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.
    Brasser SM; Norman MB; Lemon CH
    Physiol Genomics; 2010 May; 41(3):232-43. PubMed ID: 20145204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.
    Smith KR; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2017 Oct; 313(4):R450-R462. PubMed ID: 28768658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice.
    Glendinning JI; Gillman J; Zamer H; Margolskee RF; Sclafani A
    Physiol Behav; 2012 Aug; 107(1):50-8. PubMed ID: 22683548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.