These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28383795)
1. Fabrication and characterization of electrospun polycaprolactone and gelatin composite cuffs for tissue engineered blood vessels. Strobel HA; Calamari EL; Beliveau A; Jain A; Rolle MW J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):817-826. PubMed ID: 28383795 [TBL] [Abstract][Full Text] [Related]
2. Assembly of Tissue-Engineered Blood Vessels with Spatially Controlled Heterogeneities. Strobel HA; Hookway TA; Piola M; Fiore GB; Soncini M; Alsberg E; Rolle MW Tissue Eng Part A; 2018 Oct; 24(19-20):1492-1503. PubMed ID: 29724157 [TBL] [Abstract][Full Text] [Related]
3. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Fu W; Liu Z; Feng B; Hu R; He X; Wang H; Yin M; Huang H; Zhang H; Wang W Int J Nanomedicine; 2014; 9():2335-44. PubMed ID: 24872696 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Rose JB; Sidney LE; Patient J; White LJ; Dua HS; El Haj AJ; Hopkinson A; Rose FRAJ J Biomed Mater Res A; 2019 Apr; 107(4):828-838. PubMed ID: 30578722 [TBL] [Abstract][Full Text] [Related]
5. Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. Madhavan K; Frid MG; Hunter K; Shandas R; Stenmark KR; Park D J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):278-290. PubMed ID: 28130878 [TBL] [Abstract][Full Text] [Related]
6. Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparin-loaded polycaprolactone/gelatin hybrid vascular grafts. Shi J; Chen S; Wang L; Zhang X; Gao J; Jiang L; Tang D; Zhang L; Midgley A; Kong D; Wang S J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2040-2049. PubMed ID: 30556953 [TBL] [Abstract][Full Text] [Related]
7. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering. Shamirzaei Jeshvaghani E; Ghasemi-Mobarakeh L; Mansurnezhad R; Ajalloueian F; Kharaziha M; Dinari M; Sami Jokandan M; Chronakis IS J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2371-2383. PubMed ID: 29168916 [TBL] [Abstract][Full Text] [Related]
8. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. Hwang PT; Murdock K; Alexander GC; Salaam AD; Ng JI; Lim DJ; Dean D; Jun HW J Biomed Mater Res A; 2016 Apr; 104(4):1017-29. PubMed ID: 26567028 [TBL] [Abstract][Full Text] [Related]
9. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels. Horner CB; Ico G; Johnson J; Zhao Y; Nam J J Mech Behav Biomed Mater; 2016 Jun; 59():207-219. PubMed ID: 26774618 [TBL] [Abstract][Full Text] [Related]
10. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine. Liu Y; Nelson T; Chakroff J; Cromeens B; Johnson J; Lannutti J; Besner GE J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):750-760. PubMed ID: 30270503 [TBL] [Abstract][Full Text] [Related]
11. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Pok S; Myers JD; Madihally SV; Jacot JG Acta Biomater; 2013 Mar; 9(3):5630-42. PubMed ID: 23128158 [TBL] [Abstract][Full Text] [Related]
12. Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds. Jiang YC; Jiang L; Huang A; Wang XF; Li Q; Turng LS Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():901-908. PubMed ID: 27987787 [TBL] [Abstract][Full Text] [Related]
13. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
15. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. Sattary M; Rafienia M; Khorasani MT; Salehi H J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):933-950. PubMed ID: 30199600 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of alignment polycaprolactone scaffolds by combining use of electrospinning and micromolding for regulating Schwann cells behavior. Zhang L; Chen S; Liang R; Chen Y; Li S; Li S; Sun Z; Wang Y; Li G; Ming A; Yang Y J Biomed Mater Res A; 2018 Dec; 106(12):3123-3134. PubMed ID: 30260557 [TBL] [Abstract][Full Text] [Related]
19. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
20. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]