These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28383795)

  • 21. Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications.
    Sharif S; Ai J; Azami M; Verdi J; Atlasi MA; Shirian S; Samadikuchaksaraei A
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1578-1586. PubMed ID: 28792664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning.
    Huang YY; Wang DY; Chang LL; Yang YC
    J Biomater Sci Polym Ed; 2010; 21(11):1503-14. PubMed ID: 20534198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering.
    Ardila DC; Tamimi E; Doetschman T; Wagner WR; Vande Geest JP
    J Control Release; 2019 Apr; 299():44-52. PubMed ID: 30797003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone.
    Zhu GC; Gu YQ; Geng X; Feng ZG; Zhang SW; Ye L; Wang ZG
    J Mater Sci Mater Med; 2015 Feb; 26(2):112. PubMed ID: 25665848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering.
    Gautam S; Sharma C; Purohit SD; Singh H; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111588. PubMed ID: 33321633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering.
    Guo Z; Xu J; Ding S; Li H; Zhou C; Li L
    J Biomater Sci Polym Ed; 2015; 26(15):989-1001. PubMed ID: 26123758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.
    Alemán-Domínguez ME; Giusto E; Ortega Z; Tamaddon M; Benítez AN; Liu C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):521-528. PubMed ID: 29717804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioengineering of fibroblast-conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering.
    Yazdanpanah A; Madjd Z; Pezeshki-Modaress M; Khosrowpour Z; Farshi P; Eini L; Kiani J; Seifi M; Kundu SC; Ghods R; Gholipourmalekabadi M
    Artif Organs; 2022 Jun; 46(6):1040-1054. PubMed ID: 35006608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats.
    Mubyana K; Koppes RA; Lee KL; Cooper JA; Corr DT
    J Biomed Mater Res A; 2016 Nov; 104(11):2794-800. PubMed ID: 27355844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():356-366. PubMed ID: 30274067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth.
    Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method.
    Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering.
    Nadim A; Khorasani SN; Kharaziha M; Davoodi SM
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():47-58. PubMed ID: 28576011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of polycaprolactone tubular scaffolds with an orthogonal-bilayer structure for smooth muscle cells.
    Tsai SW; Yu YL; Hsu FY
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():308-314. PubMed ID: 30948066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining electrospinning and cell sheet technology for the development of a multiscale tissue engineered ligament construct (TELC).
    Vaquette C; Sudheesh Kumar PT; Petcu EB; Ivanovski S
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):399-409. PubMed ID: 28170157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytocompatibility of electrospun nanofiber tubular scaffolds for small diameter tissue engineering blood vessels.
    Xiang P; Li M; Zhang CY; Chen DL; Zhou ZH
    Int J Biol Macromol; 2011 Oct; 49(3):281-8. PubMed ID: 21600916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composite Polycaprolactone/Gelatin Nanofiber Membrane Scaffolds for Mesothelial Cell Culture and Delivery in Mesothelium Repair.
    Govindaraju DT; Kao HH; Chien YM; Chen JP
    Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.