These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 28383796)
1. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. Mora-Gutiérrez JM; Garcia-Fernandez N; Slon Roblero MF; Páramo JA; Escalada FJ; Wang DJ; Benito A; Fernández-Seara MA J Magn Reson Imaging; 2017 Dec; 46(6):1810-1817. PubMed ID: 28383796 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling. Cai YZ; Li ZC; Zuo PL; Pfeuffer J; Li YM; Liu F; Liu RB J Magn Reson Imaging; 2017 Aug; 46(2):589-594. PubMed ID: 28181335 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Ren T; Wen CL; Chen LH; Xie SS; Cheng Y; Fu YX; Oesingmann N; de Oliveira A; Zuo PL; Yin JZ; Xia S; Shen W Magn Reson Imaging; 2016 Sep; 34(7):908-14. PubMed ID: 27114341 [TBL] [Abstract][Full Text] [Related]
4. Measurement of arterial transit time and renal blood flow using pseudocontinuous ASL MRI with multiple post-labeling delays: Feasibility, reproducibility, and variation. Kim DW; Shim WH; Yoon SK; Oh JY; Kim JK; Jung H; Matsuda T; Kim D J Magn Reson Imaging; 2017 Sep; 46(3):813-819. PubMed ID: 28092411 [TBL] [Abstract][Full Text] [Related]
5. Capability of arterial spin labeling and intravoxel incoherent motion diffusion-weighted imaging to detect early kidney injury in chronic kidney disease. Mao W; Ding Y; Ding X; Fu C; Cao B; Kuehn B; Benkert T; Grimm R; Zhou J; Zeng M Eur Radiol; 2023 May; 33(5):3286-3294. PubMed ID: 36512040 [TBL] [Abstract][Full Text] [Related]
6. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy. Brown RS; Sun MRM; Stillman IE; Russell TL; Rosas SE; Wei JL Nephrol Dial Transplant; 2020 Jun; 35(6):970-978. PubMed ID: 31329940 [TBL] [Abstract][Full Text] [Related]
9. Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Nery F; De Vita E; Clark CA; Gordon I; Thomas DL Magn Reson Med; 2019 May; 81(5):2972-2984. PubMed ID: 30536817 [TBL] [Abstract][Full Text] [Related]
10. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. Gillis KA; McComb C; Foster JE; Taylor AH; Patel RK; Morris ST; Jardine AG; Schneider MP; Roditi GH; Delles C; Mark PB BMC Nephrol; 2014 Jan; 15():23. PubMed ID: 24484613 [TBL] [Abstract][Full Text] [Related]
11. Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Ritt M; Janka R; Schneider MP; Martirosian P; Hornegger J; Bautz W; Uder M; Schmieder RE Nephrol Dial Transplant; 2010 Apr; 25(4):1126-33. PubMed ID: 19934080 [TBL] [Abstract][Full Text] [Related]
12. Diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease. Wang L; Wu J; Cheng JF; Liu XY; Ma F; Guo LH; Xu JM; Wu T; Mohan C; Peng A; Xu HX; Song YX J Nephrol; 2015 Dec; 28(6):669-78. PubMed ID: 25712236 [TBL] [Abstract][Full Text] [Related]
13. Use of Three-Dimensional Arterial Spin Labeling to Evaluate Renal Perfusion in Patients With Chronic Kidney Disease. Lu F; Yang J; Yang S; Bernd K; Fu C; Yang C; Xu H; Liu M; Zhan S; Wang C; Guo R; Wu Y J Magn Reson Imaging; 2021 Oct; 54(4):1152-1163. PubMed ID: 33769645 [TBL] [Abstract][Full Text] [Related]
14. T1 mapping combined with arterial spin labeling MRI to identify renal injury in patients with liver cirrhosis. Xie S; Chen M; Chen C; Zhao Y; Qin J; Qiu C; Zhu J; Nickel MD; Kuehn B; Shen W Front Endocrinol (Lausanne); 2024; 15():1363797. PubMed ID: 39184137 [TBL] [Abstract][Full Text] [Related]
15. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats. Romero CA; Cabral G; Knight RA; Ding G; Peterson EL; Carretero OA Am J Physiol Renal Physiol; 2018 Jan; 314(1):F99-F106. PubMed ID: 28978533 [TBL] [Abstract][Full Text] [Related]
16. Bias and Precision in Magnetic Resonance Imaging-Based Estimates of Renal Blood Flow: Assessment by Triangulation. Alhummiany BA; Shelley D; Saysell M; Olaru MA; Kühn B; Buckley DL; Bailey J; Wroe K; Coupland C; Mansfield MW; Sourbron SP; Sharma K J Magn Reson Imaging; 2022 Apr; 55(4):1241-1250. PubMed ID: 34397124 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Wang J; Zhang Y; Yang X; Wang X; Zhang J; Fang J; Jiang X Acad Radiol; 2012 Oct; 19(10):1194-200. PubMed ID: 22958717 [TBL] [Abstract][Full Text] [Related]
18. Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI. Harteveld AA; de Boer A; Franklin SL; Leiner T; van Stralen M; Bos C MAGMA; 2020 Feb; 33(1):81-94. PubMed ID: 31811490 [TBL] [Abstract][Full Text] [Related]
19. Arterial spin labeling and diffusion-weighted MR imaging: quantitative assessment of renal pathological injury in chronic kidney disease. Pi S; Li Y; Lin C; Li G; Wen H; Peng H; Wang J Abdom Radiol (NY); 2023 Mar; 48(3):999-1010. PubMed ID: 36598569 [TBL] [Abstract][Full Text] [Related]
20. Longitudinal evaluation of perfusion changes in acute and chronic renal allograft rejection using arterial spin labeling in translational mouse models. Hueper K; Schmidbauer M; Thorenz A; Bräsen JH; Gutberlet M; Mengel M; Hartung D; Chen R; Meier M; Haller H; Wacker F; Rong S; Gueler F J Magn Reson Imaging; 2017 Dec; 46(6):1664-1672. PubMed ID: 28342287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]