These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28383896)

  • 1. Exploring the Role of Adsorption and Surface State on the Hydrophobicity of Rare Earth Oxides.
    Lundy R; Byrne C; Bogan J; Nolan K; Collins MN; Dalton E; Enright R
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13751-13760. PubMed ID: 28383896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N
    ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The apparent surface free energy of rare earth oxides is governed by hydrocarbon adsorption.
    Oh J; Orejon D; Park W; Cha H; Sett S; Yokoyama Y; Thoreton V; Takata Y; Miljkovic N
    iScience; 2022 Jan; 25(1):103691. PubMed ID: 35036875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale computational design of hydrophobic RE surface-doped Al
    Czelej K; Zemła MR; Spiewak P; Wejrzanowski T; Kurzydłowski KJ
    Phys Chem Chem Phys; 2017 Aug; 19(31):21119-21126. PubMed ID: 28749519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study.
    Carchini G; García-Melchor M; Łodziana Z; López N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):152-60. PubMed ID: 26652180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Hydrophobic Nature of Metal Oxide Surfaces Created by Atomic Layer Deposition.
    Bae J; Samek IA; Stair PC; Snurr RQ
    Langmuir; 2019 Apr; 35(17):5762-5769. PubMed ID: 30970206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobicity of rare-earth oxide ceramics.
    Azimi G; Dhiman R; Kwon HM; Paxson AT; Varanasi KK
    Nat Mater; 2013 Apr; 12(4):315-20. PubMed ID: 23333998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium.
    Nurmi L; Kontturi K; Houbenov N; Laine J; Ruokolainen J; Seppälä J
    Langmuir; 2010 Oct; 26(19):15325-32. PubMed ID: 20825194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates.
    Chow PK; Singh E; Viana BC; Gao J; Luo J; Li J; Lin Z; Elías AL; Shi Y; Wang Z; Terrones M; Koratkar N
    ACS Nano; 2015 Mar; 9(3):3023-31. PubMed ID: 25752871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis.
    Hozumi A; Cheng DF; Yagihashi M
    J Colloid Interface Sci; 2011 Jan; 353(2):582-7. PubMed ID: 20970808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces.
    Shim J; Seo D; Oh S; Lee J; Nam Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surfactants on wetting of super-hydrophobic surfaces.
    Mohammadi R; Wassink J; Amirfazli A
    Langmuir; 2004 Oct; 20(22):9657-62. PubMed ID: 15491199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application.
    Zhuang J; Sun QJ; Zhou Y; Han ST; Zhou L; Yan Y; Peng H; Venkatesh S; Wu W; Li RK; Roy VA
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31128-31135. PubMed ID: 27762140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.
    Xu P; Coyle TW; Pershin L; Mostaghimi J
    J Colloid Interface Sci; 2018 Aug; 523():35-44. PubMed ID: 29605739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.