BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 28383907)

  • 1. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
    Dong M; Horitani M; Dzikovski B; Freed JH; Ealick SE; Hoffman BM; Lin H
    J Am Chem Soc; 2017 Apr; 139(16):5680-5683. PubMed ID: 28383907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.
    Dong M; Zhang Y; Lin H
    Biochemistry; 2018 Jun; 57(25):3454-3459. PubMed ID: 29708734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme.
    Zhang Y; Zhu X; Torelli AT; Lee M; Dzikovski B; Koralewski RM; Wang E; Freed J; Krebs C; Ealick SE; Lin H
    Nature; 2010 Jun; 465(7300):891-6. PubMed ID: 20559380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme.
    Dong M; Horitani M; Dzikovski B; Pandelia ME; Krebs C; Freed JH; Hoffman BM; Lin H
    J Am Chem Soc; 2016 Aug; 138(31):9755-8. PubMed ID: 27465315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis.
    Zhu X; Dzikovski B; Su X; Torelli AT; Zhang Y; Ealick SE; Freed JH; Lin H
    Mol Biosyst; 2011 Jan; 7(1):74-81. PubMed ID: 20931132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The asymmetric function of Dph1-Dph2 heterodimer in diphthamide biosynthesis.
    Dong M; Dando EE; Kotliar I; Su X; Dzikovski B; Freed JH; Lin H
    J Biol Inorg Chem; 2019 Sep; 24(6):777-782. PubMed ID: 31463593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis.
    Dong M; Su X; Dzikovski B; Dando EE; Zhu X; Du J; Freed JH; Lin H
    J Am Chem Soc; 2014 Feb; 136(5):1754-7. PubMed ID: 24422557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis.
    Dong M; Kathiresan V; Fenwick MK; Torelli AT; Zhang Y; Caranto JD; Dzikovski B; Sharma A; Lancaster KM; Freed JH; Ealick SE; Hoffman BM; Lin H
    Science; 2018 Mar; 359(6381):1247-1250. PubMed ID: 29590073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dph3 Enables Aerobic Diphthamide Biosynthesis by Donating One Iron Atom to Transform a [3Fe-4S] to a [4Fe-4S] Cluster in Dph1-Dph2.
    Zhang Y; Su D; Dzikovski B; Majer SH; Coleman R; Chandrasekaran S; Fenwick MK; Crane BR; Lancaster KM; Freed JH; Lin H
    J Am Chem Soc; 2021 Jun; 143(25):9314-9319. PubMed ID: 34154323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis.
    Dong M; Zhang Y; Lin H
    Methods Enzymol; 2018; 606():421-438. PubMed ID: 30097101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
    Broderick WE; Hoffman BM; Broderick JB
    Acc Chem Res; 2018 Nov; 51(11):2611-2619. PubMed ID: 30346729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase.
    Chen D; Walsby C; Hoffman BM; Frey PA
    J Am Chem Soc; 2003 Oct; 125(39):11788-9. PubMed ID: 14505379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe
    Feng J; Shaik S; Wang B
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20430-20436. PubMed ID: 34302311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ENDOR Spectroscopy Reveals the "Free" 5'-Deoxyadenosyl Radical in a Radical SAM Enzyme Active Site Actually is Chaperoned by Close Interaction with the Methionine-Bound [4Fe-4S]
    Yang H; Ho MB; Lundahl MN; Mosquera MA; Broderick WE; Broderick JB; Hoffman BM
    J Am Chem Soc; 2024 Feb; 146(6):3710-3720. PubMed ID: 38308759
    [No Abstract]   [Full Text] [Related]  

  • 15. Auxiliary iron-sulfur cofactors in radical SAM enzymes.
    Lanz ND; Booker SJ
    Biochim Biophys Acta; 2015 Jun; 1853(6):1316-34. PubMed ID: 25597998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of
    Impano S; Yang H; Jodts RJ; Pagnier A; Swimley R; McDaniel EC; Shepard EM; Broderick WE; Broderick JB; Hoffman BM
    J Am Chem Soc; 2021 Jan; 143(1):335-348. PubMed ID: 33372786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme.
    Walsby CJ; Hong W; Broderick WE; Cheek J; Ortillo D; Broderick JB; Hoffman BM
    J Am Chem Soc; 2002 Mar; 124(12):3143-51. PubMed ID: 11902903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover.
    Pagnier A; Yang H; Jodts RJ; James CD; Shepard EM; Impano S; Broderick WE; Hoffman BM; Broderick JB
    J Am Chem Soc; 2020 Oct; 142(43):18652-18660. PubMed ID: 32966073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.
    Horitani M; Shisler K; Broderick WE; Hutcheson RU; Duschene KS; Marts AR; Hoffman BM; Broderick JB
    Science; 2016 May; 352(6287):822-5. PubMed ID: 27174986
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Ütkür K; Schmidt S; Mayer K; Klassen R; Brinkmann U; Schaffrath R
    Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.