BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28384067)

  • 1. miR-101 Enhances Cisplatin-Induced DNA Damage Through Decreasing Nicotinamide Adenine Dinucleotide Phosphate Levels by Directly Repressing Tp53-Induced Glycolysis and Apoptosis Regulator Expression in Prostate Cancer Cells.
    Huang S; Yang Z; Ma Y; Yang Y; Wang S
    DNA Cell Biol; 2017 Apr; 36(4):303-310. PubMed ID: 28384067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIGAR regulates glycolysis in ischemic kidney proximal tubules.
    Kim J; Devalaraja-Narashimha K; Padanilam BJ
    Am J Physiol Renal Physiol; 2015 Feb; 308(4):F298-308. PubMed ID: 25503731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockdown of TKTL1 additively complements cisplatin-induced cytotoxicity in nasopharyngeal carcinoma cells by regulating the levels of NADPH and ribose-5-phosphate.
    Dong Y; Wang M
    Biomed Pharmacother; 2017 Jan; 85():672-678. PubMed ID: 27916418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide.
    Maurer GD; Heller S; Wanka C; Rieger J; Steinbach JP
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30823646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells.
    Li B; Wang Z; Xie JM; Wang G; Qian LQ; Guan XM; Shen XP; Qin ZH; Shen GH; Li XQ; Gao QG
    Acta Pharmacol Sin; 2019 Jan; 40(1):111-121. PubMed ID: 29769743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis.
    Wanka C; Steinbach JP; Rieger J
    J Biol Chem; 2012 Sep; 287(40):33436-46. PubMed ID: 22887998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An RNA-directed nucleoside anti-metabolite, 1-(3-C-ethynyl-beta-d-ribo-pentofuranosyl)cytosine (ECyd), elicits antitumor effect via TP53-induced Glycolysis and Apoptosis Regulator (TIGAR) downregulation.
    Lui VW; Lau CP; Cheung CS; Ho K; Ng MH; Cheng SH; Hong B; Tsao SW; Tsang CM; Lei KI; Yamasaki Y; Mita A; Chan AT
    Biochem Pharmacol; 2010 Jun; 79(12):1772-80. PubMed ID: 20219441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer.
    Ko YH; Domingo-Vidal M; Roche M; Lin Z; Whitaker-Menezes D; Seifert E; Capparelli C; Tuluc M; Birbe RC; Tassone P; Curry JM; Navarro-Sabaté À; Manzano A; Bartrons R; Caro J; Martinez-Outschoorn U
    J Biol Chem; 2016 Dec; 291(51):26291-26303. PubMed ID: 27803158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of TIGAR Increases Exogenous p53 and Cisplatin Combination Sensitivity in Lung Cancer Cells by Regulating Glycolytic Flux.
    Fu J; Yu S; Zhao X; Zhang C; Shen L; Liu Y; Yu H
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells.
    Peña-Rico MA; Calvo-Vidal MN; Villalonga-Planells R; Martínez-Soler F; Giménez-Bonafé P; Navarro-Sabaté À; Tortosa A; Bartrons R; Manzano A
    Radiother Oncol; 2011 Oct; 101(1):132-9. PubMed ID: 21864926
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Wong EY; Wong SC; Chan CM; Lam EK; Ho LY; Lau CP; Au TC; Chan AK; Tsang CM; Tsao SW; Lui VW; Chan AT
    Oncol Lett; 2015 Feb; 9(2):569-574. PubMed ID: 25621025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-885-5p plays an accomplice role in liver cancer by instigating TIGAR expression via targeting its promoter.
    Zou S; Rao Y; Chen W
    Biotechnol Appl Biochem; 2019 Sep; 66(5):763-771. PubMed ID: 31119791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-induced hsa-miR-101 promotes glycolysis by targeting TIGAR mRNA in clear cell renal cell carcinoma.
    Xu X; Liu C; Bao J
    Mol Med Rep; 2017 Mar; 15(3):1373-1378. PubMed ID: 28138701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.
    Bensaad K; Tsuruta A; Selak MA; Vidal MN; Nakano K; Bartrons R; Gottlieb E; Vousden KH
    Cell; 2006 Jul; 126(1):107-20. PubMed ID: 16839880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, regulation, and biological functions of TIGAR and its role in diseases.
    Tang J; Chen L; Qin ZH; Sheng R
    Acta Pharmacol Sin; 2021 Oct; 42(10):1547-1555. PubMed ID: 33510458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway.
    Yu HP; Xie JM; Li B; Sun YH; Gao QG; Ding ZH; Wu HR; Qin ZH
    Sci Rep; 2015 Apr; 5():9853. PubMed ID: 25928429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and associated with poor prognosis in patients with cytogenetically normal acute myeloid leukemia.
    Qian S; Li J; Hong M; Zhu Y; Zhao H; Xie Y; Huang J; Lian Y; Li Y; Wang S; Mao J; Chen Y
    J Hematol Oncol; 2016 Nov; 9(1):128. PubMed ID: 27884166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation.
    Zhao M; Fan J; Liu Y; Yu Y; Xu J; Wen Q; Zhang J; Fu S; Wang B; Xiang L; Feng J; Wu J; Yang L
    Int J Oncol; 2016 Feb; 48(2):756-64. PubMed ID: 26691054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer.
    Wu QQ; Zheng B; Weng GB; Yang HM; Ren Y; Weng XJ; Zhang SW; Zhu WZ
    J Cell Biochem; 2019 Jun; 120(6):10215-10227. PubMed ID: 30637800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIGAR alleviates oxidative stress in brain with extended ischemia via a pentose phosphate pathway-independent manner.
    Liu M; Zhou X; Li Y; Ma S; Pan L; Zhang X; Zheng W; Wu Z; Wang K; Ahsan A; Wu J; Jiang L; Lu Y; Hu W; Qin Z; Chen Z; Zhang X
    Redox Biol; 2022 Jul; 53():102323. PubMed ID: 35576689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.