BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28384236)

  • 1. An integrated method for the identification of novel genes related to oral cancer.
    Chen L; Yang J; Xing Z; Yuan F; Shu Y; Zhang Y; Kong X; Huang T; Li H; Cai YD
    PLoS One; 2017; 12(4):e0175185. PubMed ID: 28384236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease.
    Li L; Wang Y; An L; Kong X; Huang T
    PLoS One; 2017; 12(8):e0182592. PubMed ID: 28787010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Novel Tumor Suppressor Genes with a Protein-Protein Interaction Network and Network Diffusion Algorithms.
    Chen L; Zhang YH; Zhang Z; Huang T; Cai YD
    Mol Ther Methods Clin Dev; 2018 Sep; 10():57-67. PubMed ID: 30069494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.
    Zhang J; Suo Y; Liu M; Xu X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2369-2375. PubMed ID: 29237571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities.
    Chen L; Zhang YH; Huang T; Cai YD
    Mol Genet Genomics; 2016 Apr; 291(2):913-34. PubMed ID: 26728152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Genes Related to Uveitis by Utilization of the Random Walk with Restart Algorithm on a Protein-Protein Interaction Network.
    Lu S; Yan Y; Li Z; Chen L; Yang J; Zhang Y; Wang S; Liu L
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28505077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based method for mining novel HPV infection related genes using random walk with restart algorithm.
    Zhu L; Su F; Xu Y; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2376-2383. PubMed ID: 29197659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.
    Chen L; Liu T; Zhao X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2228-2240. PubMed ID: 29247833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying cancer driver genes using a two-stage random walk with restart on a gene interaction network.
    Meng P; Wang G; Guo H; Jiang T
    Comput Biol Med; 2023 May; 158():106810. PubMed ID: 37011433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization.
    Le DH; Kwon YK
    Comput Biol Chem; 2013 Jun; 44():1-8. PubMed ID: 23434623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.
    Zhang Y; Dai L; Liu Y; Zhang Y; Wang S
    PLoS One; 2017; 12(5):e0177017. PubMed ID: 28472169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms.
    Chen L; Zhang YH; Huang G; Pan X; Huang T; Cai YD
    Gene Ther; 2019 Dec; 26(12):465-478. PubMed ID: 31455874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm.
    Guo W; Shang DM; Cao JH; Feng K; He YC; Jiang Y; Wang S; Gao YF
    Biomed Res Int; 2017; 2017():6132436. PubMed ID: 28255556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Random Walk with Restart Model Based on Common Neighbors for Predicting the Clinical Drug Combinations on Coronary Heart Disease.
    Che Y; Cheng W; Wang Y; Chen D
    J Healthc Eng; 2021; 2021():4597391. PubMed ID: 34925734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of New Candidate Genes and Chemicals Related to Esophageal Cancer Using a Hybrid Interaction Network of Chemicals and Proteins.
    Gao YF; Yuan F; Liu J; Li LP; He YC; Gao RJ; Cai YD; Jiang Y
    PLoS One; 2015; 10(6):e0129474. PubMed ID: 26058041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognizing novel chemicals/drugs for anatomical therapeutic chemical classes with a heat diffusion algorithm.
    Liang H; Hu B; Chen L; Wang S; Aorigele
    Biochim Biophys Acta Mol Basis Dis; 2020 Nov; 1866(11):165910. PubMed ID: 32768680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.
    Li J; Wang L; Guo M; Zhang R; Dai Q; Liu X; Wang C; Teng Z; Xuan P; Zhang M
    FEBS Open Bio; 2015; 5():251-6. PubMed ID: 25870785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.