BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28384236)

  • 21. Fast Inbound Top-K Query for Random Walk with Restart.
    Zhang C; Jiang S; Chen Y; Sun Y; Han J
    Mach Learn Knowl Discov Databases; 2015 Sep; 9285():608-624. PubMed ID: 26709392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computational method using the random walk with restart algorithm for identifying novel epigenetic factors.
    Li J; Chen L; Wang S; Zhang Y; Kong X; Huang T; Cai YD
    Mol Genet Genomics; 2018 Feb; 293(1):293-301. PubMed ID: 28932904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seed-weighted random walk ranking for cancer biomarker prioritisation: a case study in leukaemia.
    Huan T; Wu X; Bai Z; Chen JY
    Int J Data Min Bioinform; 2014; 9(2):135-48. PubMed ID: 24864375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Genes Associated with Breast Cancer Metastasis to Bone on a Protein-Protein Interaction Network with a Shortest Path Algorithm.
    Cai YD; Zhang Q; Zhang YH; Chen L; Huang T
    J Proteome Res; 2017 Feb; 16(2):1027-1038. PubMed ID: 28076954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach.
    Yuan F; Zhang YH; Wan S; Wang S; Kong XY
    Biomed Res Int; 2015; 2015():623121. PubMed ID: 26613085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms.
    Yang CH; Chuang LY; Cheng YH; Lin YD; Wang CL; Wen CH; Chang HW
    Kaohsiung J Med Sci; 2012 Jul; 28(7):362-8. PubMed ID: 22726897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying novel associations between small molecules and miRNAs based on integrated molecular networks.
    Lv Y; Wang S; Meng F; Yang L; Wang Z; Wang J; Chen X; Jiang W; Li Y; Li X
    Bioinformatics; 2015 Nov; 31(22):3638-44. PubMed ID: 26198104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IRWRLDA: improved random walk with restart for lncRNA-disease association prediction.
    Chen X; You ZH; Yan GY; Gong DW
    Oncotarget; 2016 Sep; 7(36):57919-57931. PubMed ID: 27517318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lentiviral short hairpin RNA screen of human kinases and phosphatases to identify potential biomarkers in oral squamous cancer cells.
    Yeh MH; Tsai TC; Kuo HP; Chang NW; Lee MR; Chung JG; Tsai MH; Liu JY; Kao MC
    Int J Oncol; 2011 Nov; 39(5):1221-31. PubMed ID: 21720705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mining for genes related to choroidal neovascularization based on the shortest path algorithm and protein interaction information.
    Zhang J; Suo Y; Zhang YH; Zhang Q; Chen X; Xu X; Lu W
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2740-9. PubMed ID: 26987808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Random Walk-Based Method to Identify Candidate Genes Associated With Lymphoma.
    Sheng M; Cai H; Yang Q; Li J; Zhang J; Liu L
    Front Genet; 2021; 12():792754. PubMed ID: 34899868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated network analysis and logistic regression modeling identify stage-specific genes in Oral Squamous Cell Carcinoma.
    Randhawa V; Acharya V
    BMC Med Genomics; 2015 Jul; 8():39. PubMed ID: 26179909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of Pathway Knowledge and Dynamic Bayesian Networks for the Prediction of Oral Cancer Recurrence.
    Kourou K; Papaloukas C; Fotiadis DI
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):320-327. PubMed ID: 28114044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finding gastric cancer related genes and clinical biomarkers for detection based on gene-gene interaction network.
    Wu X; Tang H; Guan A; Sun F; Wang H; Shu J
    Math Biosci; 2016 Jun; 276():1-7. PubMed ID: 26700107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Differentially Expressed Genes Induced by Aberrant Methylation in Oral Squamous Cell Carcinomas Using Integrated Bioinformatic Analysis.
    Zhang X; Feng H; Li D; Liu S; Amizuka N; Li M
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29875348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring phenotype-associated modules in an oral cavity tumor using an integrated framework.
    Sun Z; Luo J; Zhou Y; Luo J; Liu K; Li W
    Bioinformatics; 2009 Mar; 25(6):795-800. PubMed ID: 19181684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.