These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28384344)

  • 1. The influence of the negative-positive ratio and screening database size on the performance of machine learning-based virtual screening.
    Kurczab R; Bojarski AJ
    PLoS One; 2017; 12(4):e0175410. PubMed ID: 28384344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of negative training set size on machine learning-based virtual screening.
    Kurczab R; Smusz S; Bojarski AJ
    J Cheminform; 2014; 6():32. PubMed ID: 24976867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2013 Jul; 53(7):1595-601. PubMed ID: 23799269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach.
    Pasupa K; Kudisthalert W
    PLoS One; 2018; 13(4):e0195478. PubMed ID: 29652912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.
    Periwal V; Scaria V
    Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical Model Selection for Prospective Virtual Screening.
    Liu S; Alnammi M; Ericksen SS; Voter AF; Ananiev GE; Keck JL; Hoffmann FM; Wildman SA; Gitter A
    J Chem Inf Model; 2019 Jan; 59(1):282-293. PubMed ID: 30500183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models.
    Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H
    J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning classification can reduce false positives in structure-based virtual screening.
    Adeshina YO; Deeds EJ; Karanicolas J
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Congestion game scheduling for virtual drug screening optimization.
    Nikitina N; Ivashko E; Tchernykh A
    J Comput Aided Mol Des; 2018 Feb; 32(2):363-374. PubMed ID: 29264790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors.
    Chandra S; Pandey J; Tamrakar AK; Siddiqi MI
    J Mol Graph Model; 2017 Jan; 71():242-256. PubMed ID: 28006676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation.
    Jensen O; Brockmöller J; Dücker C
    J Med Chem; 2021 Mar; 64(5):2762-2776. PubMed ID: 33606526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach.
    Egieyeh S; Syce J; Malan SF; Christoffels A
    PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of Applications of Machine Learning Based Classification Methods for Virtual Screening of Lead Molecules.
    Vyas R; Bapat S; Jain E; Tambe SS; Karthikeyan M; Kulkarni BD
    Comb Chem High Throughput Screen; 2015; 18(7):658-72. PubMed ID: 26138573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of New Methods Needs Proper Evaluation-Benchmarking Sets for Machine Learning Experiments for Class A GPCRs.
    Leśniak D; Podlewska S; Jastrzębski S; Sieradzki I; Bojarski AJ; Tabor J
    J Chem Inf Model; 2019 Dec; 59(12):4974-4992. PubMed ID: 31604014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of machine learning methods for ligand-based virtual screening.
    Plewczynski D; Spieser SA; Koch U
    Comb Chem High Throughput Screen; 2009 May; 12(4):358-68. PubMed ID: 19442065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-silico predictive mutagenicity model generation using supervised learning approaches.
    Seal A; Passi A; Jaleel UA; ; Wild DJ
    J Cheminform; 2012 May; 4(1):10. PubMed ID: 22587596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.