These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28384344)

  • 21. Machine learning in virtual screening.
    Melville JL; Burke EK; Hirst JD
    Comb Chem High Throughput Screen; 2009 May; 12(4):332-43. PubMed ID: 19442063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profile-QSAR 2.0: Kinase Virtual Screening Accuracy Comparable to Four-Concentration IC
    Martin EJ; Polyakov VR; Tian L; Perez RC
    J Chem Inf Model; 2017 Aug; 57(8):2077-2088. PubMed ID: 28651433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeepScreening: a deep learning-based screening web server for accelerating drug discovery.
    Liu Z; Du J; Fang J; Yin Y; Xu G; Xie L
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31608949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of human flap endonuclease 1 (FEN1) inhibitors using a machine learning based consensus virtual screening.
    Deshmukh AL; Chandra S; Singh DK; Siddiqi MI; Banerjee D
    Mol Biosyst; 2017 Jul; 13(8):1630-1639. PubMed ID: 28685785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of the inactives subset generation on the performance of machine learning methods.
    Smusz S; Kurczab R; Bojarski AJ
    J Cheminform; 2013 Apr; 5(1):17. PubMed ID: 23561266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QSAR classification-based virtual screening followed by molecular docking studies for identification of potential inhibitors of 5-lipoxygenase.
    Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K
    Comput Biol Chem; 2018 Dec; 77():154-166. PubMed ID: 30321850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries.
    Pham-The H; Casañola-Martin G; Diéguez-Santana K; Nguyen-Hai N; Ngoc NT; Vu-Duc L; Le-Thi-Thu H
    SAR QSAR Environ Res; 2017 Mar; 28(3):199-220. PubMed ID: 28332438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting virtual screening enrichments with data fusion: coalescing hits from two-dimensional fingerprints, shape, and docking.
    Sastry GM; Inakollu VS; Sherman W
    J Chem Inf Model; 2013 Jul; 53(7):1531-42. PubMed ID: 23782297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental design strategy: weak reinforcement leads to increased hit rates and enhanced chemical diversity.
    Maciejewski M; Wassermann AM; Glick M; Lounkine E
    J Chem Inf Model; 2015 May; 55(5):956-62. PubMed ID: 25915687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple machine learning methods aided virtual screening of Na
    Kong W; Huang W; Peng C; Zhang B; Duan G; Ma W; Huang Z
    J Cell Mol Med; 2023 Jan; 27(2):266-276. PubMed ID: 36573431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular fingerprint similarity search in virtual screening.
    Cereto-Massagué A; Ojeda MJ; Valls C; Mulero M; Garcia-Vallvé S; Pujadas G
    Methods; 2015 Jan; 71():58-63. PubMed ID: 25132639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual Screening Meets Deep Learning.
    Pérez-Sianes J; Pérez-Sánchez H; Díaz F
    Curr Comput Aided Drug Des; 2019; 15(1):6-28. PubMed ID: 30338743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods.
    Duan J; Dixon SL; Lowrie JF; Sherman W
    J Mol Graph Model; 2010 Sep; 29(2):157-70. PubMed ID: 20579912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening.
    Cortés-Ciriano I; Firth NC; Bender A; Watson O
    J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.