BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28384393)

  • 1. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils.
    Ruckthong L; Peacock AFA; Pascoe CE; Hemmingsen L; Stuckey JA; Pecoraro VL
    Chemistry; 2017 Jun; 23(34):8232-8243. PubMed ID: 28384393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of second coordination sphere D-amino acids alters Cd(II) geometries in designed thiolate-rich proteins.
    Ruckthong L; Deb A; Hemmingsen L; Penner-Hahn JE; Pecoraro VL
    J Biol Inorg Chem; 2018 Jan; 23(1):123-135. PubMed ID: 29218636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for Solving Highly Symmetric De Novo Designed Metalloproteins: Crystallographic Examination of a Novel Three-Stranded Coiled-Coil Structure Containing d-Amino Acids.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Methods Enzymol; 2016; 580():135-48. PubMed ID: 27586331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural comparisons of apo- and metalated three-stranded coiled coils clarify metal binding determinants in thiolate containing designed peptides.
    Chakraborty S; Touw DS; Peacock AF; Stuckey J; Pecoraro VL
    J Am Chem Soc; 2010 Sep; 132(38):13240-50. PubMed ID: 20825181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd-thiolate cluster.
    Zaytsev DV; Morozov VA; Fan J; Zhu X; Mukherjee M; Ni S; Kennedy MA; Ogawa MY
    J Inorg Biochem; 2013 Feb; 119():1-9. PubMed ID: 23160144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Outer Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Chemistry; 2019 May; 25(27):6773-6787. PubMed ID: 30861211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using diastereopeptides to control metal ion coordination in proteins.
    Peacock AF; Hemmingsen L; Pecoraro VL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16566-71. PubMed ID: 18940928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo protein design as a methodology for synthetic bioinorganic chemistry.
    Mocny CS; Pecoraro VL
    Acc Chem Res; 2015 Aug; 48(8):2388-96. PubMed ID: 26237119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils.
    Dieckmann GR; McRorie DK; Lear JD; Sharp KA; DeGrado WF; Pecoraro VL
    J Mol Biol; 1998 Jul; 280(5):897-912. PubMed ID: 9671558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils.
    Ghosh D; Lee KH; Demeler B; Pecoraro VL
    Biochemistry; 2005 Aug; 44(31):10732-40. PubMed ID: 16060682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of metal binding by a designed protein: single ligand substitutions at a tetrahedral Cys2His2 site.
    Klemba M; Regan L
    Biochemistry; 1995 Aug; 34(31):10094-100. PubMed ID: 7632681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Crystallographic Examination of Predisposition versus Preorganization in de Novo Designed Metalloproteins.
    Ruckthong L; Zastrow ML; Stuckey JA; Pecoraro VL
    J Am Chem Soc; 2016 Sep; 138(36):11979-88. PubMed ID: 27532255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of thiolate rich metal binding sites within a peptidic framework.
    Ɓuczkowski M; Stachura M; Schirf V; Demeler B; Hemmingsen L; Pecoraro VL
    Inorg Chem; 2008 Dec; 47(23):10875-88. PubMed ID: 18959366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.
    Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T
    Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity.
    Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q
    Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the binding of cadmium(II), mercury(II), and arsenic(III) to the de novo designed peptides TRI L12C and TRI L16C.
    Matzapetakis M; Farrer BT; Weng TC; Hemmingsen L; Penner-Hahn JE; Pecoraro VL
    J Am Chem Soc; 2002 Jul; 124(27):8042-54. PubMed ID: 12095348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.