BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28384578)

  • 1. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015.
    Yang P; Xia J; Zhan C; Qiao Y; Wang Y
    Sci Total Environ; 2017 Oct; 595():218-228. PubMed ID: 28384578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of multi-mission satellite data assimilation for studying water storage changes over South America.
    Khaki M; Awange J
    Sci Total Environ; 2019 Jan; 647():1557-1572. PubMed ID: 30180360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data.
    Jiao JJ; Zhang X; Liu Y; Kuang X
    PLoS One; 2015; 10(10):e0141442. PubMed ID: 26506230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products.
    Anyah RO; Forootan E; Awange JL; Khaki M
    Sci Total Environ; 2018 Sep; 635():1405-1416. PubMed ID: 29710593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016.
    Khaki M; Awange J; Forootan E; Kuhn M
    Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking the water storage and runoff variations in the Paraná basin via GNSS measurements.
    Qiu K; You W; Jiang Z; Tang M
    Sci Total Environ; 2024 Feb; 912():168831. PubMed ID: 38061646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO.
    Fatolazadeh F; Goïta K
    Sci Total Environ; 2021 Jul; 779():146435. PubMed ID: 34030259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods.
    Rateb A; Kuo CY; Imani M; Tseng KH; Lan WH; Ching KE; Tseng TP
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products.
    Ferreira VG; Yong B; Tourian MJ; Ndehedehe CE; Shen Z; Seitz K; Dannouf R
    Sci Total Environ; 2020 May; 718():137354. PubMed ID: 32325611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach for generating optimal GLDAS hydrological products and uncertainties.
    Fatolazadeh F; Eshagh M; Goïta K
    Sci Total Environ; 2020 Aug; 730():138932. PubMed ID: 32416501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Akaike's Bayesian Information Criterion for the Joint Inversion of Terrestrial Water Storage Using GPS Vertical Displacements, GRACE and GLDAS in Southwest China.
    Liu Y; Fok HS; Tenzer R; Chen Q; Chen X
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations.
    Chen H; Zhang W; Nie N; Guo Y
    Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California.
    Carlson G; Werth S; Shirzaei M
    J Geophys Res Solid Earth; 2022 Mar; 127(3):e2021JB023135. PubMed ID: 35866034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the spatial patterns of water storage variation over China in recent 70 years.
    Chen Z; Jiang W; Wu J; Chen K; Deng Y; Jia K; Mo X
    Sci Rep; 2017 Jul; 7(1):6423. PubMed ID: 28743953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India.
    Satish Kumar K; Venkata Rathnam E; Sridhar V
    Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin.
    Ndehedehe CE; Awange JL; Corner RJ; Kuhn M; Okwuashi O
    Sci Total Environ; 2016 Jul; 557-558():819-37. PubMed ID: 27064845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of climate and vegetation leaf area index changes on global terrestrial water storage from 2002 to 2016.
    Tao F; Chen Y; Fu B
    Sci Total Environ; 2020 Jul; 724():138298. PubMed ID: 32272410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China.
    Sun W; Jin Y; Yu J; Wang G; Xue B; Zhao Y; Fu Y; Shrestha S
    Sci Total Environ; 2020 Jan; 698():134171. PubMed ID: 31514033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.