BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2838497)

  • 1. Analytical strategy for determination of active site sequences in aminoacyl-tRNA synthetases.
    Beauvallet C; Hountondji C; Schmitter JM
    J Chromatogr; 1988 Apr; 438(2):347-57. PubMed ID: 2838497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide mapping of aminoacyl-tRNA synthetases: evidence for internal sequence homology in Escherichia coli leucyl-tRNA synthetase.
    Waterson RM; Konigsberg WH
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):376-80. PubMed ID: 4592690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacyl-tRNA synthetases: affinity labeling of the ATP binding site by 2', 3' -ribose oxidized ATP.
    Fayat G; Fromant M; Blanquet S
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2088-92. PubMed ID: 353807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular complex of aminoacyl-tRNA synthetases from sheep liver. Identification of the methionyl-tRNA synthetase component by affinity labeling.
    Brevet A; Geffrotin C; Kellermann O
    Eur J Biochem; 1982 Jun; 124(3):483-8. PubMed ID: 6286305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNAPhe.
    Hountondji C; Schmitter JM; Beauvallet C; Blanquet S
    Biochemistry; 1987 Aug; 26(17):5433-9. PubMed ID: 2823880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeating sequences in aminoacyl-tRNA synthetases.
    Koch GL; Boulanger Y; Hartley BS
    Nature; 1974 May; 249(455):316-20. PubMed ID: 4841363
    [No Abstract]   [Full Text] [Related]  

  • 7. Inactivation of aminoacyl-tRNA synthetases by amino acid chloromethylketones.
    Silver J; Laursen RA
    Biochim Biophys Acta; 1974 Feb; 340(1):77-89. PubMed ID: 4363122
    [No Abstract]   [Full Text] [Related]  

  • 8. Affinity modification of phenylalanine: tRNA-ligase of E. coli MRE-600 with N-chlorambucilyl-(14C)-phenylalanyl-tRNA.
    Lavrik OI; Khutoryanskaya LZ
    FEBS Lett; 1974 Mar; 39(3):287-90. PubMed ID: 4604069
    [No Abstract]   [Full Text] [Related]  

  • 9. Affinity chromatography of aminoacyl-tRNA synthetases on specific tRNA columns without prior purification of tRNA.
    Joyce CM; Knowles JR
    Biochem Biophys Res Commun; 1974 Oct; 60(4):1278-85. PubMed ID: 4608676
    [No Abstract]   [Full Text] [Related]  

  • 10. Methionyl-tRNA synthetase from Escherichia coli: primary structure at the binding site for the 3'-end of tRNAfMet.
    Hountondji C; Blanquet S; Lederer F
    Biochemistry; 1985 Feb; 24(5):1175-80. PubMed ID: 3913464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosyl-tRNA synthetase of Escherichia coli B. Binding of various ligands.
    Chousterman S; Chapeville F
    Eur J Biochem; 1973 May; 35(1):51-6. PubMed ID: 4576576
    [No Abstract]   [Full Text] [Related]  

  • 12. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the tRNA(Phe) acceptor end with the synthetase involves a sequence common to yeast and Escherichia coli phenylalanyl-tRNA synthetases.
    Sanni A; Hountondji C; Blanquet S; Ebel JP; Boulanger Y; Fasiolo F
    Biochemistry; 1991 Mar; 30(9):2448-53. PubMed ID: 1900433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of the possibility of identifying the structural elements of the phenylalanyl-tRNA-synthetase active center by affinity labeling].
    Khodyreva SN; Sycheva EA; Ankilova VN; Lavrik OI
    Mol Biol (Mosk); 1984; 18(5):1316-20. PubMed ID: 6390178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. 1. Extensive purification and characterization of the high-molecular-weight complex(es) of seven aminoacyl-tRNA synthetases from sheep liver.
    Kellermann O; Brevet A; Tonetti H; Waller JP
    Eur J Biochem; 1979 Sep; 99(3):541-50. PubMed ID: 499214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies on isoleucyl-tRNA synthetase from E. coli.
    Kula MR
    FEBS Lett; 1973 Sep; 35(2):299-302. PubMed ID: 4582946
    [No Abstract]   [Full Text] [Related]  

  • 17. Do yeast aminoacyl-tRNA synthetases exist as soluble enzymes within the cytoplasm?
    Cirakoglu B; Waller JP
    Eur J Biochem; 1985 Jun; 149(2):353-61. PubMed ID: 3888626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptides at the tRNA binding site of the crystallizable monomeric form of E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H; Leon O
    Nucleic Acids Res; 1987 Dec; 15(24):10523-30. PubMed ID: 3320968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginyl-tRNA synthetase from Escherichia coli, purification by affinity chromatography, properties, and steady-state kinetics.
    Lin SX; Shi JP; Cheng XD; Wang YL
    Biochemistry; 1988 Aug; 27(17):6343-8. PubMed ID: 3064807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The primary structure of protein L6 from the aminoacyl-tRNA binding site of the Escherichia coli ribosome.
    Chen R; Arfsten U; Chen-Schmeisser U
    Hoppe Seylers Z Physiol Chem; 1977 Apr; 358(4):531-5. PubMed ID: 324885
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.