These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2838497)

  • 21. Repeated sequences in methionyl-tRNA synthetase from E. coli.
    Bruton CJ; Jakes R; Koch GL
    FEBS Lett; 1974 Sep; 45(1):26-8. PubMed ID: 4607017
    [No Abstract]   [Full Text] [Related]  

  • 22. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subunit structure and binding properties of three amino acid transfer ribonucleic acid ligases.
    Rymo L; Lundvik L; Lagerkvist U
    J Biol Chem; 1972 Jun; 247(12):3888-97. PubMed ID: 4555952
    [No Abstract]   [Full Text] [Related]  

  • 24. [Comparative analysis of affinity modification of several aminoacyl-tRNA synthetases with gamma-(p-azidoanilide)-ATP].
    Bulychev NA; Lavrik OI; Nevinskiĭ GA
    Mol Biol (Mosk); 1980; 14(3):558-67. PubMed ID: 6995829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A continuous spectrophotometric assay for Escherichia coli alanyl-transfer RNA synthetase.
    Roy S
    Anal Biochem; 1983 Sep; 133(2):292-5. PubMed ID: 6356984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence similarities among the family of aminoacyl-tRNA synthetases.
    Hountondji C; Dessen P; Blanquet S
    Biochimie; 1986 Sep; 68(9):1071-8. PubMed ID: 3096385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. I. A study of the stages in the quantitative isolation of aminoacyl-tRNA synthetase activities from mouse liver.
    Berg BH
    Biochim Biophys Acta; 1975 Jun; 395(2):164-72. PubMed ID: 1138938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The aminoacyl-tRNA synthetase-tRNA complex: detection by differential labelling of lysine residues involved in complex formation.
    Bosshard HR; Koch GL; Harley BS
    J Mol Biol; 1978 Mar; 119(3):377-89. PubMed ID: 641993
    [No Abstract]   [Full Text] [Related]  

  • 29. Selective labelling of the beta-subunit of L-phenylalanyl-tRNA synthetase from E. coli with N-bromoacetyl-L-phenylalanyl-tRNA Phe.
    Bartmann P; Hanke T; Hammer-Raber B; Holler E
    Biochem Biophys Res Commun; 1974 Sep; 60(2):743-7. PubMed ID: 4607775
    [No Abstract]   [Full Text] [Related]  

  • 30. Identification of peptide sequences at the tRNA binding site of Escherichia coli methionyl-tRNA synthetase.
    Valenzuela D; Schulman LH
    Biochemistry; 1986 Aug; 25(16):4555-61. PubMed ID: 3094575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Affinity chromatography of phenylalanine:tRNA ligase.
    Forrester PI; Hancock RL
    Can J Biochem; 1973 Mar; 51(3):231-4. PubMed ID: 4573323
    [No Abstract]   [Full Text] [Related]  

  • 32. Gram-scale purification of methionyl-tRNA and tyrosyl-tRNA synthetases from Escherichia coli.
    Bruton C; Jakes R; Atkinson T
    Eur J Biochem; 1975 Nov; 59(2):327-33. PubMed ID: 1107028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent coupling of 4-thiouridine in the initiator methionine tRNA to specific lysine residues in Escherichia coli methionyl-tRNA synthetase.
    Leon O; Schulman LH
    Biochemistry; 1987 Nov; 26(22):7113-21. PubMed ID: 3122828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural studies on isoleucyl-tRNA synthetase from E. coli--identification of the cysteine residue modified specifically with N-ethylmaleimide.
    Kula MR
    FEBS Lett; 1974 Sep; 46(1):130-3. PubMed ID: 4607801
    [No Abstract]   [Full Text] [Related]  

  • 35. Structural studies on aminoacyl-tRNA synthetases. A tentative correlation between the subunit size and the occurrence of repeated sequences.
    Potier S; Robbe-Saul S; Boulanger Y
    Biochim Biophys Acta; 1980 Jul; 624(1):130-41. PubMed ID: 6996739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of purified valyl-transfer ribonucleic acid synthetase from Bacillus stearothermophilus and from Escherichia coli.
    Wilkinson S; Knowles JR
    Biochem J; 1974 May; 139(2):391-8. PubMed ID: 4614793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA.
    Jonák J; Pokorná K; Meloun B; Karas K
    Eur J Biochem; 1986 Jan; 154(2):355-62. PubMed ID: 3510872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The characterization of the RNAs and aminoacyl-tRNA synthetases of the blue-green alga, Anacystis nidulans.
    Beauchemin N; Larue B; Cedergren RJ
    Arch Biochem Biophys; 1973 May; 156(1):17-25. PubMed ID: 4199781
    [No Abstract]   [Full Text] [Related]  

  • 39. [Comparative analysis of interaction sites of Thermus thermophilus and Escherichia coli tRNA(Tyr) with homologous aminoacyl-tRNA synthetases by means of chemical modification and nuclease hydrolysis].
    Egorova SP; Iaremchuk AD; Kriklivyĭ IA; Tukalo MA
    Bioorg Khim; 1998 Aug; 24(8):593-600. PubMed ID: 9784879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain.
    Lorber B; Mejdoub H; Reinbolt J; Boulanger Y; Giegé R
    Eur J Biochem; 1988 May; 174(1):155-61. PubMed ID: 3286258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.