These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28385918)

  • 21. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise.
    Jubeau M; Rupp T; Perrey S; Temesi J; Wuyam B; Levy P; Verges S; Millet GY
    PLoS One; 2014; 9(2):e89157. PubMed ID: 24586559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles.
    Zijdewind I; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans.
    Hortobágyi T; Taylor JL; Petersen NT; Russell G; Gandevia SC
    J Neurophysiol; 2003 Oct; 90(4):2451-9. PubMed ID: 14534271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation.
    Lagan J; Lang P; Strutton PH
    Clin Neurophysiol; 2008 Dec; 119(12):2839-45. PubMed ID: 18976953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN; Nordlund MM
    Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle.
    Griffin L; Cafarelli E
    J Electromyogr Kinesiol; 2007 Aug; 17(4):446-52. PubMed ID: 16891123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training.
    Colomer-Poveda D; Hortobágyi T; Keller M; Romero-Arenas S; Márquez G
    Scand J Med Sci Sports; 2020 Apr; 30(4):652-661. PubMed ID: 31785009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibration stimulation during non-fatiguing tonic contraction induces outlasting neuroplastic effects.
    Christova M; Rafolt D; Mayr W; Wilfling B; Gallasch E
    J Electromyogr Kinesiol; 2010 Aug; 20(4):627-35. PubMed ID: 20363152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running.
    Temesi J; Rupp T; Martin V; Arnal PJ; Féasson L; Verges S; Millet GY
    Med Sci Sports Exerc; 2014 Jun; 46(6):1166-75. PubMed ID: 24195865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulus strength related effect of transcranial magnetic stimulation on maximal voluntary contraction force of human quadriceps femoris muscle.
    Urbach D; Awiszus F
    Exp Brain Res; 2002 Jan; 142(1):25-31. PubMed ID: 11797081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Four Weeks of Strength Training on the Corticomotoneuronal Pathway.
    Nuzzo JL; Barry BK; Jones MD; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2017 Nov; 49(11):2286-2296. PubMed ID: 28692630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural Correlates to the Increase in Maximal Force after Dexamethasone Administration.
    Baudry S; Motta G; Botter A; Duchateau J; Minetto MA
    Med Sci Sports Exerc; 2018 Feb; 50(2):218-224. PubMed ID: 28930864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise.
    Gruet M; Temesi J; Rupp T; Levy P; Verges S; Millet GY
    Exp Physiol; 2014 Aug; 99(8):1053-64. PubMed ID: 24907029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ipsilateral corticomotor responses are confined to the homologous muscle following cross-education of muscular strength.
    Mason J; Frazer AK; Horvath DM; Pearce AJ; Avela J; Howatson G; Kidgell DJ
    Appl Physiol Nutr Metab; 2018 Jan; 43(1):11-22. PubMed ID: 28829918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training.
    Vitry F; Martin A; Papaiordanidou M
    J Appl Physiol (1985); 2019 Nov; 127(5):1469-1477. PubMed ID: 31545155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.