These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28386237)

  • 1. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling.
    Townsend NE; Nichols DS; Skiba PF; Racinais S; Périard JD
    Front Physiol; 2017; 8():180. PubMed ID: 28386237
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling Intermittent Cycling Performance in Hypoxia Using the Critical Power Concept.
    Shearman S; Dwyer D; Skiba P; Townsend N
    Med Sci Sports Exerc; 2016 Mar; 48(3):527-35. PubMed ID: 26460632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of recovery interval duration on the parameters of the critical power model for incremental exercise.
    Vinetti G; Fagoni N; Taboni A; Camelio S; di Prampero PE; Ferretti G
    Eur J Appl Physiol; 2017 Sep; 117(9):1859-1867. PubMed ID: 28687955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI; Jones AM; Kelly JA; Bailey SJ; Vanhatalo A
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical power, W' and W' reconstitution in women and men.
    Bourgois G; Mucci P; Boone J; Colosio AL; Bourgois JG; Pogliaghi S; Caen K
    Eur J Appl Physiol; 2023 Dec; 123(12):2791-2801. PubMed ID: 37369796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription.
    Chorley A; Lamb KL
    Sports (Basel); 2020 Sep; 8(9):. PubMed ID: 32899777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J; de Souza KM; de Lucas RD; Guglielmo LG; Greco CC; Denadai BS
    PLoS One; 2015; 10(9):e0138428. PubMed ID: 26407169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hypoxia on the power-duration relationship during high-intensity exercise.
    Simpson LP; Jones AM; Skiba PF; Vanhatalo A; Wilkerson D
    Int J Sports Med; 2015 Feb; 36(2):113-9. PubMed ID: 25329429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y; Miura A; Endo M; Kan A; Yanagawa K; Whipp BJ
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-Derived Power-Duration Variables to Predict Cycling Time-Trial Performance.
    Nimmerichter A; Prinz B; Gumpenberger M; Heider S; Wirth K
    Int J Sports Physiol Perform; 2020 Sep; 15(8):1095-1102. PubMed ID: 32040941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical Power, Work Capacity, and Recovery Characteristics of Team-Pursuit Cyclists.
    Pugh CF; Beaven CM; Ferguson RA; Driller MW; Palmer CD; Paton CD
    Int J Sports Physiol Perform; 2022 Nov; 17(11):1606-1613. PubMed ID: 36068071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-session testing protocol to determine critical power and W'.
    Constantini K; Sabapathy S; Cross TJ
    Eur J Appl Physiol; 2014 Jun; 114(6):1153-61. PubMed ID: 24563054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramuscular determinants of the ability to recover work capacity above critical power.
    Skiba PF; Fulford J; Clarke DC; Vanhatalo A; Jones AM
    Eur J Appl Physiol; 2015 Apr; 115(4):703-13. PubMed ID: 25425258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM; Ashtiani F; Mocko GM; Vahidi A; Hutchison RE
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.