These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2838636)

  • 1. Identification and functional reconstitution of phosphate: sugar phosphate antiport of Staphylococcus aureus.
    Sonna LA; Maloney PC
    J Membr Biol; 1988 Mar; 101(3):267-74. PubMed ID: 2838636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of sugar phosphate transport systems of Escherichia coli.
    Ambudkar SV; Larson TJ; Maloney PC
    J Biol Chem; 1986 Jul; 261(20):9083-6. PubMed ID: 3522583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial anion exchange. Use of osmolytes during solubilization and reconstitution of phosphate-linked antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    J Biol Chem; 1986 Aug; 261(22):10079-86. PubMed ID: 3090028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of phosphate:hexose 6-phosphate antiport in membrane vesicles of Streptococcus lactis.
    Ambudkar SV; Maloney PC
    J Biol Chem; 1984 Oct; 259(20):12576-85. PubMed ID: 6436237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of the phosphoglycerate transport protein of Salmonella typhimurium.
    Varadhachary A; Maloney PC
    J Biol Chem; 1991 Jan; 266(1):130-5. PubMed ID: 1985888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of glucose 6-phosphate transport by Escherichia coli.
    Sonna LA; Ambudkar SV; Maloney PC
    J Biol Chem; 1988 May; 263(14):6625-30. PubMed ID: 3283129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of phosphate-linked antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    Biochem Biophys Res Commun; 1985 Jun; 129(2):568-75. PubMed ID: 2990460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcus aureus Preferentially Liberates Inorganic Phosphate from Organophosphates in Environments where This Nutrient Is Limiting.
    Kelliher JL; Leder Macek AJ; Grudzinski KM; Radin JN; Kehl-Fie TE
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis.
    Maloney PC; Ambudkar SV; Thomas J; Schiller L
    J Bacteriol; 1984 Apr; 158(1):238-45. PubMed ID: 6325388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pho regulon-dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi.
    Brzoska P; Rimmele M; Brzostek K; Boos W
    J Bacteriol; 1994 Jan; 176(1):15-20. PubMed ID: 8282692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system.
    Xavier KB; Kossmann M; Santos H; Boos W
    J Bacteriol; 1995 Feb; 177(3):699-704. PubMed ID: 7836304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered substrate selectivity in a mutant of an intrahelical salt bridge in UhpT, the sugar phosphate carrier of Escherichia coli.
    Hall JA; Fann MC; Maloney PC
    J Biol Chem; 1999 Mar; 274(10):6148-53. PubMed ID: 10037698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glucose-6-phosphate transport is not mediated by a glucose-6-phosphate/phosphate exchange in liver microsomes.
    Marcolongo P; Fulceri R; Giunti R; Margittai E; Banhegyi G; Benedetti A
    FEBS Lett; 2012 Sep; 586(19):3354-9. PubMed ID: 22819816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cd2+ on phosphate uptake by cadmium-resistant and cadmium-sensitive Staphylococcus aureus.
    Tynecka Z; Szcześniak Z
    Microbios; 1991; 67(274):53-63. PubMed ID: 1758309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion-exchange mechanisms in bacteria.
    Maloney PC; Ambudkar SV; Anatharam V; Sonna LA; Varadhachary A
    Microbiol Rev; 1990 Mar; 54(1):1-17. PubMed ID: 2181257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts.
    Tetlow IJ; Bowsher CG; Emes MJ
    Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):717-23. PubMed ID: 8920972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system.
    Lascelles J; Burke KA
    J Bacteriol; 1978 May; 134(2):585-9. PubMed ID: 207671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of UhpT, the sugar phosphate transporter of Escherichia coli.
    Tamai E; Fann MC; Tsuchiya T; Maloney PC
    Protein Expr Purif; 1997 Jul; 10(2):275-82. PubMed ID: 9226724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
    Kadner RJ; Murphy GP; Stephens CM
    J Gen Microbiol; 1992 Oct; 138(10):2007-14. PubMed ID: 1479338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of the link between potassium transport and phosphate transport in Escherichia coli.
    Russell LM; Rosenberg H
    Biochem J; 1980 Jun; 188(3):715-23. PubMed ID: 6258560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.