BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 28386724)

  • 1. Shaping the cellular landscape with Set2/SETD2 methylation.
    McDaniel SL; Strahl BD
    Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity.
    Dronamraju R; Jha DK; Eser U; Adams AT; Dominguez D; Choudhury R; Chiang YC; Rathmell WK; Emanuele MJ; Churchman LS; Strahl BD
    Nucleic Acids Res; 2018 Feb; 46(3):1331-1344. PubMed ID: 29294086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation.
    Hacker KE; Fahey CC; Shinsky SA; Chiang YJ; DiFiore JV; Jha DK; Vo AH; Shavit JA; Davis IJ; Strahl BD; Rathmell WK
    J Biol Chem; 2016 Sep; 291(40):21283-21295. PubMed ID: 27528607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond.
    Molenaar TM; van Leeuwen F
    Cell Mol Life Sci; 2022 Jun; 79(6):346. PubMed ID: 35661267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation.
    Gopalakrishnan R; Marr SK; Kingston RE; Winston F
    Nucleic Acids Res; 2019 May; 47(8):3888-3903. PubMed ID: 30793188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing acts of SRI and an auto-inhibitory domain specify Set2 function at transcribed chromatin.
    Wang Y; Niu Y; Li B
    Nucleic Acids Res; 2015 May; 43(10):4881-92. PubMed ID: 25925577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase.
    Lam UTF; Chen ES
    Int J Biochem Cell Biol; 2022 Mar; 144():106155. PubMed ID: 34990836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae.
    Sorenson MR; Jha DK; Ucles SA; Flood DM; Strahl BD; Stevens SW; Kress TL
    RNA Biol; 2016; 13(4):412-26. PubMed ID: 26821844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional specificity of H3K36 methylation.
    Lam UTF; Tan BKY; Poh JJX; Chen ES
    Epigenetics Chromatin; 2022 May; 15(1):17. PubMed ID: 35581654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36.
    Youdell ML; Kizer KO; Kisseleva-Romanova E; Fuchs SM; Duro E; Strahl BD; Mellor J
    Mol Cell Biol; 2008 Aug; 28(16):4915-26. PubMed ID: 18541663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development.
    Venkatesh S; Workman JL
    Wiley Interdiscip Rev Dev Biol; 2013; 2(5):685-700. PubMed ID: 24014454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair.
    Jha DK; Strahl BD
    Nat Commun; 2014 Jun; 5():3965. PubMed ID: 24910128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique and Shared Roles for Histone H3K36 Methylation States in Transcription Regulation Functions.
    DiFiore JV; Ptacek TS; Wang Y; Li B; Simon JM; Strahl BD
    Cell Rep; 2020 Jun; 31(10):107751. PubMed ID: 32521276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the language of Lys36 methylation at histone H3.
    Wagner EJ; Carpenter PB
    Nat Rev Mol Cell Biol; 2012 Jan; 13(2):115-26. PubMed ID: 22266761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin.
    Bicocca VT; Ormsby T; Adhvaryu KK; Honda S; Selker EU
    Elife; 2018 Nov; 7():. PubMed ID: 30468429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation.
    Fahey CC; Davis IJ
    Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone H3 lysine 36 methyltransferase mobilizes NER factors to regulate tolerance against alkylation damage in fission yeast.
    Lim KK; Nguyen TTT; Li AY; Yeo YP; Chen ES
    Nucleic Acids Res; 2018 Jun; 46(10):5061-5074. PubMed ID: 29635344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation.
    Zhang Y; Shan CM; Wang J; Bao K; Tong L; Jia S
    Sci Rep; 2017 Mar; 7():43906. PubMed ID: 28256625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Chromatin-Cytoskeleton Link in Cancer.
    Giaccia AJ
    Mol Cancer Res; 2016 Dec; 14(12):1173-1175. PubMed ID: 27528705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription.
    Pai CC; Kishkevich A; Deegan RS; Keszthelyi A; Folkes L; Kearsey SE; De León N; Soriano I; de Bruin RAM; Carr AM; Humphrey TC
    Cell Rep; 2017 Sep; 20(11):2693-2705. PubMed ID: 28903048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.