BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28386991)

  • 1. How Inter- and Intramolecular Reactions Dominate the Formation of Products in Lignin Pyrolysis.
    Custodis VBF; Hemberger P; van Bokhoven JA
    Chemistry; 2017 Jun; 23(36):8658-8668. PubMed ID: 28386991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of fast pyrolysis of lignin: studying model compounds.
    Custodis VB; Hemberger P; Ma Z; van Bokhoven JA
    J Phys Chem B; 2014 Jul; 118(29):8524-31. PubMed ID: 24937704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.
    Beste A; Buchanan AC
    J Phys Chem A; 2012 Dec; 116(50):12242-8. PubMed ID: 23194314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
    Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of alpha/beta-selectivities.
    Beste A; Buchanan AC; Britt PF; Hathorn BC; Harrison RJ
    J Phys Chem A; 2007 Dec; 111(48):12118-26. PubMed ID: 17990858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation.
    Zhang H; Wang Y; Shao S; Xiao R
    Sci Rep; 2016 Nov; 6():37513. PubMed ID: 27869228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata.
    Kim YM; Jae J; Myung S; Sung BH; Dong JI; Park YK
    Bioresour Technol; 2016 Nov; 219():371-377. PubMed ID: 27501034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2016 Sep; 9(17):2397-403. PubMed ID: 27486717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether.
    Jarvis MW; Daily JW; Carstensen HH; Dean AM; Sharma S; Dayton DC; Robichaud DJ; Nimlos MR
    J Phys Chem A; 2011 Feb; 115(4):428-38. PubMed ID: 21218825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating radical-mediated pyrolysis behaviors of preoxidized lignins.
    Fan Y; Lei M; Han Y; Zhang Z; Kong X; Xu W; Li M; Zhang H; Xiao R; Liu C
    Bioresour Technol; 2022 Apr; 350():126908. PubMed ID: 35227917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of liquid and solid products from liquid phase pyrolysis.
    Schwaiger N; Witek V; Feiner R; Pucher H; Zahel K; Pieber A; Pucher P; Ahn E; Chernev B; Schroettner H; Wilhelm P; Siebenhofer M
    Bioresour Technol; 2012 Nov; 124():90-4. PubMed ID: 22989638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO.
    Chen X; Li S; Liu Z; Chen Y; Yang H; Wang X; Che Q; Chen W; Chen H
    Bioresour Technol; 2019 Sep; 287():121493. PubMed ID: 31112930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Catalyzed Thermochemical Conversion of Lignin Model Compounds: An Overview.
    Oregui-Bengoechea M; Agirre I; Iriondo A; Lopez-Urionabarrenechea A; Requies JM; Agirrezabal-Telleria I; Bizkarra K; Barrio VL; Cambra JF
    Top Curr Chem (Cham); 2019 Nov; 377(6):36. PubMed ID: 31728773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.