These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 28386994)
1. A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding. McCandless LC; Gustafson P Stat Med; 2017 Aug; 36(18):2887-2901. PubMed ID: 28386994 [TBL] [Abstract][Full Text] [Related]
2. Bayesian sensitivity analysis for unmeasured confounding in observational studies. McCandless LC; Gustafson P; Levy A Stat Med; 2007 May; 26(11):2331-47. PubMed ID: 16998821 [TBL] [Abstract][Full Text] [Related]
3. A sensitivity analysis using information about measured confounders yielded improved uncertainty assessments for unmeasured confounding. McCandless LC; Gustafson P; Levy AR J Clin Epidemiol; 2008 Mar; 61(3):247-55. PubMed ID: 18226747 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer. Steenland K; Greenland S Am J Epidemiol; 2004 Aug; 160(4):384-92. PubMed ID: 15286024 [TBL] [Abstract][Full Text] [Related]
5. Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis. McCandless LC; Somers JM Stat Methods Med Res; 2019 Feb; 28(2):515-531. PubMed ID: 28882092 [TBL] [Abstract][Full Text] [Related]
6. Hierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding. McCandless LC; Gustafson P; Levy AR; Richardson S Stat Med; 2012 Feb; 31(4):383-96. PubMed ID: 22253142 [TBL] [Abstract][Full Text] [Related]
7. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication. Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152 [TBL] [Abstract][Full Text] [Related]
8. "A Bayesian sensitivity analysis to evaluate the impact of unmeasured confounding with external data: a real world comparative effectiveness study in osteoporosis". Zhang X; Faries DE; Boytsov N; Stamey JD; Seaman JW Pharmacoepidemiol Drug Saf; 2016 Sep; 25(9):982-92. PubMed ID: 27396534 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo sensitivity analysis for unmeasured confounding in dynamic treatment regimes. Rose EJ; Moodie EEM; Shortreed SM Biom J; 2023 Jun; 65(5):e2100359. PubMed ID: 37017498 [TBL] [Abstract][Full Text] [Related]
10. unmconf : an R package for Bayesian regression with unmeasured confounders. Hebdon R; Stamey J; Kahle D; Zhang X BMC Med Res Methodol; 2024 Sep; 24(1):195. PubMed ID: 39244581 [TBL] [Abstract][Full Text] [Related]
11. Testing causal effects in observational survival data using propensity score matching design. Lu B; Cai D; Tong X Stat Med; 2018 May; 37(11):1846-1858. PubMed ID: 29399833 [TBL] [Abstract][Full Text] [Related]
12. Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation. Groenwold RHH; Shofty I; Miočević M; van Smeden M; Klugkist I BMC Med Res Methodol; 2018 Dec; 18(1):174. PubMed ID: 30577773 [TBL] [Abstract][Full Text] [Related]
13. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding. Dorie V; Harada M; Carnegie NB; Hill J Stat Med; 2016 Sep; 35(20):3453-70. PubMed ID: 27139250 [TBL] [Abstract][Full Text] [Related]
14. Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases. Wendling T; Jung K; Callahan A; Schuler A; Shah NH; Gallego B Stat Med; 2018 Oct; 37(23):3309-3324. PubMed ID: 29862536 [TBL] [Abstract][Full Text] [Related]
15. A commentary on 'A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding'. Greenland S Stat Med; 2017 Sep; 36(20):3278-3280. PubMed ID: 28766831 [No Abstract] [Full Text] [Related]
16. Bayesian data fusion: Probabilistic sensitivity analysis for unmeasured confounding using informative priors based on secondary data. Comment L; Coull BA; Zigler C; Valeri L Biometrics; 2022 Jun; 78(2):730-741. PubMed ID: 33527348 [TBL] [Abstract][Full Text] [Related]
17. Meta-analysis of observational studies with unmeasured confounders. McCandless LC Int J Biostat; 2012 Jan; 8(2):. PubMed ID: 22499731 [TBL] [Abstract][Full Text] [Related]
18. Simplified Bayesian sensitivity analysis for mismeasured and unobserved confounders. Gustafson P; McCandless LC; Levy AR; Richardson S Biometrics; 2010 Dec; 66(4):1129-37. PubMed ID: 20070294 [TBL] [Abstract][Full Text] [Related]
19. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies. Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331 [TBL] [Abstract][Full Text] [Related]
20. Bayesian modelling of lung cancer risk and bitumen fume exposure adjusted for unmeasured confounding by smoking. de Vocht F; Kromhout H; Ferro G; Boffetta P; Burstyn I Occup Environ Med; 2009 Aug; 66(8):502-8. PubMed ID: 19060029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]