BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 28387436)

  • 21. A common reference frame for describing rotation of the distal femur: a ct-based kinematic study using cadavers.
    Victor J; Van Doninck D; Labey L; Van Glabbeek F; Parizel P; Bellemans J
    J Bone Joint Surg Br; 2009 May; 91(5):683-90. PubMed ID: 19407308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do patient-specific instruments (PSI) for UKA allow non-expert surgeons to achieve the same saw cut accuracy as expert surgeons?
    Jones GG; Logishetty K; Clarke S; Collins R; Jaere M; Harris S; Cobb JP
    Arch Orthop Trauma Surg; 2018 Nov; 138(11):1601-1608. PubMed ID: 30178169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy.
    Baka N; Kaptein BL; Giphart JE; Staring M; de Bruijne M; Lelieveldt BP; Valstar E
    J Biomech; 2014 Jan; 47(1):122-9. PubMed ID: 24207131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel patient-specific navigational template for total knee arthroplasty.
    Gan Y; Xu D; Lu S; Ding J
    Comput Aided Surg; 2011; 16(6):288-97. PubMed ID: 21992188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of statistical shape modeling and alternating interpolation-based model tracking technique for measuring knee kinematics
    Lu HY; Lin CC; Shih KS; Lu TW; Kuo MY; Li SY; Hsu HC
    PeerJ; 2023; 11():e15371. PubMed ID: 37334125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skeletal landmarks for TKR implantations: evaluation of their accuracy using EOS imaging acquisition system.
    Schlatterer B; Suedhoff I; Bonnet X; Catonne Y; Maestro M; Skalli W
    Orthop Traumatol Surg Res; 2009 Feb; 95(1):2-11. PubMed ID: 19251231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cutting error of the distal femur in total knee arthroplasty by use of a navigation system.
    Nakahara H; Matsuda S; Moro-oka TA; Okazaki K; Tashiro Y; Iwamoto Y
    J Arthroplasty; 2012 Jun; 27(6):1119-22. PubMed ID: 22019323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-specific instruments for total knee arthroplasty can accurately predict the component size as used peroperative.
    Schotanus MGM; Schoenmakers DAL; Sollie R; Kort NP
    Knee Surg Sports Traumatol Arthrosc; 2017 Dec; 25(12):3844-3848. PubMed ID: 27709239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur.
    Laporte S; Skalli W; de Guise JA; Lavaste F; Mitton D
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):1-6. PubMed ID: 12623432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Accuracy of femur mechanical axis in computer-assisted total knee replacement].
    Huang X; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):82-4, 89. PubMed ID: 16532816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of a sagittal cutting error of the distal femur on the flexion-extension gap difference in total knee arthroplasty.
    Tsukeoka T; Tsuneizumi Y; Lee TH
    J Arthroplasty; 2013 Aug; 28(7):1099-102. PubMed ID: 23523491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Subject-Specific Knee Shape Reconstruction with Asynchronous Fluoroscopy Images Using Statistical Shape Modeling.
    Lu HY; Shih KS; Lin CC; Lu TW; Li SY; Kuo HW; Hsu HC
    Front Bioeng Biotechnol; 2021; 9():736420. PubMed ID: 34746102
    [No Abstract]   [Full Text] [Related]  

  • 35. New registration algorithm for determining 3D knee kinematics using CT and single-plane fluoroscopy with improved out-of-plane translation accuracy.
    Scarvell JM; Pickering MR; Smith PN
    J Orthop Res; 2010 Mar; 28(3):334-40. PubMed ID: 19798739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation.
    Karade V; Ravi B
    Int J Comput Assist Radiol Surg; 2015 Apr; 10(4):473-85. PubMed ID: 25037878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy evaluation of fluoroscopy-based 2D and 3D pose reconstruction with unicompartmental knee arthroplasty.
    Van Duren BH; Pandit H; Beard DJ; Murray DW; Gill HS
    Med Eng Phys; 2009 Apr; 31(3):356-63. PubMed ID: 18606555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interobserver and intraobserver error in distal femur transepicondylar axis measurement with computed tomography.
    Wai Hung CL; Wai Pan Y; Kwong Yuen C; Hon Bong L; Lei Sha LW; Ho Man SW
    J Arthroplasty; 2009 Jan; 24(1):96-100. PubMed ID: 18534429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
    Yan H; Dai JR
    J Appl Clin Med Phys; 2016 Mar; 17(2):174-193. PubMed ID: 27074482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.