These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
634 related articles for article (PubMed ID: 28387835)
1. Coxiella burnetii isolates originating from infected cattle induce a more pronounced proinflammatory cytokine response compared to isolates from infected goats and sheep. Ammerdorffer A; Kuley R; Dinkla A; Joosten LAB; Toman R; Roest HJ; Sprong T; Rebel JM Pathog Dis; 2017 Jun; 75(4):. PubMed ID: 28387835 [TBL] [Abstract][Full Text] [Related]
2. Molecular epidemiology of Coxiella burnetii in French livestock reveals the existence of three main genotype clusters and suggests species-specific associations as well as regional stability. Joulié A; Sidi-Boumedine K; Bailly X; Gasqui P; Barry S; Jaffrelo L; Poncet C; Abrial D; Yang E; ; Leblond A; Rousset E; Jourdain E Infect Genet Evol; 2017 Mar; 48():142-149. PubMed ID: 28007602 [TBL] [Abstract][Full Text] [Related]
3. Genotyping of Coxiella burnetii from domestic ruminants in northern Spain. Astobiza I; Tilburg JJ; Piñero A; Hurtado A; García-Pérez AL; Nabuurs-Franssen MH; Klaassen CH BMC Vet Res; 2012 Dec; 8():241. PubMed ID: 23227921 [TBL] [Abstract][Full Text] [Related]
4. Coxiella burnetii DNA detected in domestic ruminants and wildlife from Portugal. Cumbassá A; Barahona MJ; Cunha MV; Azórin B; Fonseca C; Rosalino LM; Tilburg J; Hagen F; Santos AS; Botelho A Vet Microbiol; 2015 Oct; 180(1-2):136-41. PubMed ID: 26345258 [TBL] [Abstract][Full Text] [Related]
5. Molecular detection of Coxiella burnetii in small ruminants and genotyping of specimens collected from goats in Poland. Jodełko A; Szymańska-Czerwińska M; Rola JG; Niemczuk K BMC Vet Res; 2021 Oct; 17(1):341. PubMed ID: 34711239 [TBL] [Abstract][Full Text] [Related]
6. Molecular typing of Coxiella burnetii from animal and environmental matrices during Q fever epidemics in the Netherlands. de Bruin A; van Alphen PT; van der Plaats RQ; de Heer LN; Reusken CB; van Rotterdam BJ; Janse I BMC Vet Res; 2012 Sep; 8():165. PubMed ID: 22988998 [TBL] [Abstract][Full Text] [Related]
8. Genetic diversity of Coxiella burnetii in domestic ruminants in central Italy. Di Domenico M; Curini V; Di Lollo V; Massimini M; Di Gialleonardo L; Franco A; Caprioli A; Battisti A; Cammà C BMC Vet Res; 2018 May; 14(1):171. PubMed ID: 29843709 [TBL] [Abstract][Full Text] [Related]
9. Molecular investigation, isolation and phylogenetic analsysis of Coxiella burnetii from aborted fetus and ticks. Kilicoglu Y; Cagirgan AA; Serdar G; Kaya S; Durmaz Y; Gur Y Comp Immunol Microbiol Infect Dis; 2020 Dec; 73():101571. PubMed ID: 33129174 [TBL] [Abstract][Full Text] [Related]
10. MLVA and com1 genotyping of Coxiella burnetii in farmed ruminants in Great Britain. Hemsley CM; Essex-Lopresti A; Chisnall T; Millar M; Neale S; Reichel R; Norville IH; Titball RW Vet Microbiol; 2023 Feb; 277():109629. PubMed ID: 36535174 [TBL] [Abstract][Full Text] [Related]
11. Seroprevalence of Coxiella burnetii among domestic ruminants and horses in Poland. Szymańska-Czerwińska M; Jodełko A; Pluta M; Kowalik S; Niemczuk K Acta Virol; 2017; 61(3):369-371. PubMed ID: 28854804 [TBL] [Abstract][Full Text] [Related]
12. Molecular analysis of Coxiella burnetii in Germany reveals evolution of unique clonal clusters. Frangoulidis D; Walter MC; Antwerpen M; Zimmermann P; Janowetz B; Alex M; Böttcher J; Henning K; Hilbert A; Ganter M; Runge M; Münsterkötter M; Splettstoesser WD; Hanczaruk M Int J Med Microbiol; 2014 Oct; 304(7):868-76. PubMed ID: 25037926 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization by MLVA of Coxiella burnetii strains infecting dairy cows and goats of north-eastern Italy. Ceglie L; Guerrini E; Rampazzo E; Barberio A; Tilburg JJ; Hagen F; Lucchese L; Zuliani F; Marangon S; Natale A Microbes Infect; 2015; 17(11-12):776-81. PubMed ID: 26526416 [TBL] [Abstract][Full Text] [Related]
14. Surveys on Coxiella burnetii infections in Swedish cattle, sheep, goats and moose. Ohlson A; Malmsten J; Frössling J; Bölske G; Aspán A; Dalin AM; Lindberg A Acta Vet Scand; 2014 Jul; 56(1):39. PubMed ID: 25007979 [TBL] [Abstract][Full Text] [Related]
15. Swab cloths as a tool for revealing environmental contamination by Q fever in ruminant farms. Carrié P; Barry S; Rousset E; de Crémoux R; Sala C; Calavas D; Perrin JB; Bronner A; Gasqui P; Gilot-Fromont E; Becker CAM; Gache K; Jourdain E Transbound Emerg Dis; 2019 May; 66(3):1202-1209. PubMed ID: 30702810 [TBL] [Abstract][Full Text] [Related]
16. Seroprevalence of Coxiella burnetii in selected populations of domestic ruminants in Newfoundland. Hatchette T; Campbell N; Whitney H; Hudson R; Marrie TJ Can Vet J; 2002 May; 43(5):363-4. PubMed ID: 12001502 [TBL] [Abstract][Full Text] [Related]
17. Occurrence of Coxiella burnetii in goat and ewe unpasteurized cheeses: Screening and genotyping. Galiero A; Fratini F; Cammà C; Di Domenico M; Curini V; Baronti I; Turchi B; Cerri D Int J Food Microbiol; 2016 Nov; 237():47-54. PubMed ID: 27543815 [TBL] [Abstract][Full Text] [Related]
18. Q fever and seroprevalence of Coxiella burnetii in domestic ruminants. Pexara A; Solomakos N; Govaris A Vet Ital; 2018 Dec; 54(4):265-279. PubMed ID: 30681125 [TBL] [Abstract][Full Text] [Related]
19. The effect of C. burnetii infection on the cytokine response of PBMCs from pregnant goats. Ammerdorffer A; Roest HI; Dinkla A; Post J; Schoffelen T; van Deuren M; Sprong T; Rebel JM PLoS One; 2014; 9(10):e109283. PubMed ID: 25279829 [TBL] [Abstract][Full Text] [Related]
20. Phylogeography of Human and Animal Tomaiuolo S; Boarbi S; Fancello T; Michel P; Desqueper D; Grégoire F; Callens J; Fretin D; Devriendt B; Cox E; Mori M Front Cell Infect Microbiol; 2020; 10():625576. PubMed ID: 33718257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]