These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 28387868)

  • 1. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.
    Calabrese S; Kohler A; Niehl A; Veneault-Fourrey C; Boller T; Courty PE
    Plant Cell Physiol; 2017 Jun; 58(6):1003-1017. PubMed ID: 28387868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.
    Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K
    Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.
    Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N
    Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and
    Calabrese S; Cusant L; Sarazin A; Niehl A; Erban A; Brulé D; Recorbet G; Wipf D; Roux C; Kopka J; Boller T; Courty PE
    Front Plant Sci; 2019; 10():1617. PubMed ID: 31921260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus.
    Kemppainen M; Duplessis S; Martin F; Pardo AG
    Environ Microbiol; 2009 Jul; 11(7):1878-96. PubMed ID: 19397683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees.
    Durney C; Boussageon R; El-Mjiyad N; Wipf D; Courty PE
    Mycorrhiza; 2024 Jul; 34(4):341-350. PubMed ID: 38801470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
    Li M; Wang R; Tian H; Gao Y
    Mycorrhiza; 2018 Nov; 28(8):747-759. PubMed ID: 30251133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.
    Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y
    PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.
    Tsuzuki S; Handa Y; Takeda N; Kawaguchi M
    Mol Plant Microbe Interact; 2016 Apr; 29(4):277-86. PubMed ID: 26757243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.
    Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E
    Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.
    Bonneau L; Huguet S; Wipf D; Pauly N; Truong HN
    New Phytol; 2013 Jul; 199(1):188-202. PubMed ID: 23506613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana.
    Wang Z; Lian J; Liang J; Wei H; Chen H; Hu W; Tang M
    Plant Physiol Biochem; 2024 May; 210():108648. PubMed ID: 38653094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa.
    Loth-Pereda V; Orsini E; Courty PE; Lota F; Kohler A; Diss L; Blaudez D; Chalot M; Nehls U; Bucher M; Martin F
    Plant Physiol; 2011 Aug; 156(4):2141-54. PubMed ID: 21705655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis.
    Laparre J; Malbreil M; Letisse F; Portais JC; Roux C; Bécard G; Puech-Pagès V
    Mol Plant; 2014 Mar; 7(3):554-66. PubMed ID: 24121293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network.
    Recorbet G; Calabrese S; Balliau T; Zivy M; Wipf D; Boller T; Courty PE
    Fungal Genet Biol; 2021 Feb; 147():103517. PubMed ID: 33434644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.
    Kafle A; Garcia K; Wang X; Pfeffer PE; Strahan GD; Bücking H
    Plant Cell Environ; 2019 Jan; 42(1):270-284. PubMed ID: 29859016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice.
    Drechsler N; Courty PE; Brulé D; Kunze R
    Mycorrhiza; 2018 Jan; 28(1):93-100. PubMed ID: 28993893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.
    Gerlach N; Schmitz J; Polatajko A; Schlüter U; Fahnenstich H; Witt S; Fernie AR; Uroic K; Scholz U; Sonnewald U; Bucher M
    Plant Cell Environ; 2015 Aug; 38(8):1591-612. PubMed ID: 25630535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants.
    Wang S; Chen A; Xie K; Yang X; Luo Z; Chen J; Zeng D; Ren Y; Yang C; Wang L; Feng H; López-Arredondo DL; Herrera-Estrella LR; Xu G
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16649-16659. PubMed ID: 32586957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus.
    Giovannetti M; Tolosano M; Volpe V; Kopriva S; Bonfante P
    New Phytol; 2014 Nov; 204(3):609-619. PubMed ID: 25132489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.