These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28387871)

  • 1. Leaf acclimation to light availability supports rapid growth in tall Picea sitchensis trees.
    Chin ARO; Sillett SC
    Tree Physiol; 2017 Oct; 37(10):1352-1366. PubMed ID: 28387871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical gradients in foliar physiology of tall Picea sitchensis trees.
    Kerhoulas LP; Weisgrau AS; Hoeft EC; Kerhoulas NJ
    Tree Physiol; 2020 Mar; 40(3):321-332. PubMed ID: 31976529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of genetic variation and long-term limited water availability on the ecophysiology of young Sitka spruce (Picea sitchensis (Bong.) Carr.).
    Grant OM; O'Reilly C
    Tree Physiol; 2017 Apr; 37(4):536-549. PubMed ID: 27677274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Within-crown plasticity in leaf traits among the tallest conifers.
    Chin ARO; Sillett SC
    Am J Bot; 2019 Feb; 106(2):174-186. PubMed ID: 30726576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy.
    Oldham AR; Sillett SC; Tomescu AM; Koch GW
    Am J Bot; 2010 Jul; 97(7):1087-97. PubMed ID: 21616861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer.
    Chin AR; Sillett SC
    Am J Bot; 2016 May; 103(5):796-807. PubMed ID: 27208348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia).
    Zhao C; Chen L; Ma F; Yao B; Liu J
    Tree Physiol; 2008 Jan; 28(1):133-41. PubMed ID: 17938122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.
    Shiraki A; Azuma W; Kuroda K; Ishii HR
    Tree Physiol; 2017 Oct; 37(10):1327-1336. PubMed ID: 27744383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate.
    Benomar L; Lamhamedi MS; Villeneuve I; Rainville A; Beaulieu J; Bousquet J; Margolis HA
    Tree Physiol; 2015 Aug; 35(8):864-78. PubMed ID: 26116923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment.
    Tomasella M; Beikircher B; Häberle KH; Hesse B; Kallenbach C; Matyssek R; Mayr S
    Tree Physiol; 2018 Feb; 38(2):198-211. PubMed ID: 29177459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of water stress on irradiance acclimation of leaf traits in almond trees.
    Egea G; González-Real MM; Baille A; Nortes PA; Conesa MR; Ruiz-Salleres I
    Tree Physiol; 2012 Apr; 32(4):450-63. PubMed ID: 22440881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of leaf structure and gas exchange along a height gradient in a tall conifer.
    Woodruff DR; Meinzer FC; Lachenbruch B; Johnson DM
    Tree Physiol; 2009 Feb; 29(2):261-72. PubMed ID: 19203951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why does needle photosynthesis decline with tree height in Norway spruce?
    Räim O; Kaurilind E; Hallik L; Merilo E
    Plant Biol (Stuttg); 2012 Mar; 14(2):306-14. PubMed ID: 21974690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of leaf cohorts expanded under light and water stresses: an adaptive mechanism of Eucryphia cordifolia to face changes in climatic conditions?
    Morales LV; Coopman RE; Rojas R; Escandón AB; Flexas J; Galmés J; García-Plazaola JI; Gago J; Cabrera HM; Corcuera LJ
    Tree Physiol; 2014 Dec; 34(12):1305-20. PubMed ID: 25398632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling functional trait acclimation for trees of different height in a forest light gradient: emergent patterns driven by carbon gain maximization.
    Sterck F; Schieving F
    Tree Physiol; 2011 Sep; 31(9):1024-37. PubMed ID: 21893522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology and growth of advance Picea rubens and Abies balsamea regeneration following different canopy openings.
    Dumais D; Prévost M
    Tree Physiol; 2014 Feb; 34(2):194-204. PubMed ID: 24443326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related trends in red spruce foliar plasticity in relation to declining productivity.
    Greenwood MS; Ward MH; Day ME; Adams SL; Bond BJ
    Tree Physiol; 2008 Feb; 28(2):225-32. PubMed ID: 18055433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.