These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28388108)

  • 1. Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice.
    Szalay V
    J Chem Phys; 2017 Mar; 146(12):124107. PubMed ID: 28388108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspects of the Eckart frame ro-vibrational kinetic energy operator.
    Szalay V
    J Chem Phys; 2015 Aug; 143(6):064104. PubMed ID: 26277124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator.
    Szalay V
    J Chem Phys; 2015 May; 142(17):174107. PubMed ID: 25956090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.
    Yachmenev A; Yurchenko SN
    J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eckart frame vibration-rotation Hamiltonians: contravariant metric tensor.
    Pesonen J
    J Chem Phys; 2014 Feb; 140(7):074101. PubMed ID: 24559332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia.
    Fábri C; Mátyus E; Császár AG
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():84-9. PubMed ID: 23702049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation.
    Mátyus E; Czakó G; Sutcliffe BT; Császár AG
    J Chem Phys; 2007 Aug; 127(8):084102. PubMed ID: 17764224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and exact kinetic energy operator using Eckart conditions with one or several reference geometries: Application to HONO.
    Lauvergnat D; Luis JM; Kirtman B; Reis H; Nauts A
    J Chem Phys; 2016 Feb; 144(8):084116. PubMed ID: 26931690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent Hartree (MCTDH) approach.
    Sadri K; Lauvergnat D; Gatti F; Meyer HD
    J Chem Phys; 2014 Sep; 141(11):114101. PubMed ID: 25240339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing energy levels of CH
    Zhao Z; Chen J; Zhang Z; Zhang DH; Wang XG; Carrington T; Gatti F
    J Chem Phys; 2018 Feb; 148(7):074113. PubMed ID: 29471646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame.
    Wang XG; Carrington T
    J Chem Phys; 2013 Mar; 138(10):104106. PubMed ID: 23514464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eckart-Sayvetz conditions revisited.
    Szalay V
    J Chem Phys; 2014 Jun; 140(23):234107. PubMed ID: 24952523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the Eckart frame to soft matter: rotation of star polymers under shear flow.
    Sablić J; Delgado-Buscalioni R; Praprotnik M
    Soft Matter; 2017 Oct; 13(39):6988-7000. PubMed ID: 28902209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group-theoretical formulation of an Eckart-frame kinetic energy operator in curvilinear coordinates for polyatomic molecules.
    Rey M
    J Chem Phys; 2019 Jul; 151(2):024101. PubMed ID: 31301710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the variational computation of a large number of vibrational energy levels and wave functions for medium-sized molecules.
    Mátyus E; Simunek J; Császár AG
    J Chem Phys; 2009 Aug; 131(7):074106. PubMed ID: 19708731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly excited vibrational levels of methane up to 10 300 cm
    Nikitin AV; Protasevich AE; Rey M; Tyuterev VG
    J Chem Phys; 2018 Sep; 149(12):124305. PubMed ID: 30278662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra.
    Avila G; Carrington T
    J Chem Phys; 2015 Dec; 143(21):214108. PubMed ID: 26646870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics.
    Czakó G; Szalay V; Császár AG
    J Chem Phys; 2006 Jan; 124(1):14110. PubMed ID: 16409027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations.
    Mátyus E; Czakó G; Császár AG
    J Chem Phys; 2009 Apr; 130(13):134112. PubMed ID: 19355722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.