These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28388112)

  • 1. Wavelet Monte Carlo dynamics: A new algorithm for simulating the hydrodynamics of interacting Brownian particles.
    Dyer OT; Ball RC
    J Chem Phys; 2017 Mar; 146(12):124111. PubMed ID: 28388112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of dense polymer melts using event chain algorithms.
    Kampmann TA; Boltz HH; Kierfeld J
    J Chem Phys; 2015 Jul; 143(4):044105. PubMed ID: 26233105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a Brownian-dynamics algorithm for semidilute polymer solutions.
    Jain A; Sunthar P; Dünweg B; Prakash JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066703. PubMed ID: 23005239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid sampling of stochastic displacements in Brownian dynamics simulations.
    Fiore AM; Balboa Usabiaga F; Donev A; Swan JW
    J Chem Phys; 2017 Mar; 146(12):124116. PubMed ID: 28388117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RPYFMM: Parallel Adaptive Fast Multipole Method for Rotne-Prager-Yamakawa Tensor in Biomolecular Hydrodynamics Simulations.
    Guan W; Cheng X; Huang J; Huber G; Li W; McCammon JA; Zhang B
    Comput Phys Commun; 2018 Jun; 227():99-108. PubMed ID: 30147116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
    Fiore AM; Swan JW
    J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules.
    Tworek JW; Elcock AH
    J Chem Theory Comput; 2023 Aug; 19(15):5099-5111. PubMed ID: 37409946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the accuracy of lattice Monte Carlo algorithms for simulating diffusion.
    Chubynsky MV; Slater GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016709. PubMed ID: 22400703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics.
    Pham TT; Schiller UD; Prakash JR; Dünweg B
    J Chem Phys; 2009 Oct; 131(16):164114. PubMed ID: 19894934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Brownian suspensions with fluctuating hydrodynamics.
    Delmotte B; Keaveny EE
    J Chem Phys; 2015 Dec; 143(24):244109. PubMed ID: 26723653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating wet active polymers by multiparticle collision dynamics.
    Clopés Llahí J; Martín-Gómez A; Gompper G; Winkler RG
    Phys Rev E; 2022 Jan; 105(1-2):015310. PubMed ID: 35193189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lattice kinetic Monte-Carlo method for simulating chromosomal dynamics and other (non-)equilibrium bio-assemblies.
    Miermans CA; Broedersz CP
    Soft Matter; 2020 Jan; 16(2):544-556. PubMed ID: 31808764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Monte Carlo simulations of anisotropic colloids.
    Jabbari-Farouji S; Trizac E
    J Chem Phys; 2012 Aug; 137(5):054107. PubMed ID: 22894332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
    Im W; Seefeld S; Roux B
    Biophys J; 2000 Aug; 79(2):788-801. PubMed ID: 10920012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective translational and rotational Monte Carlo cluster move for general pairwise interaction.
    Růžička Š; Allen MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033302. PubMed ID: 25314559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics.
    Miao L; Young CD; Sing CE
    J Chem Phys; 2017 Jul; 147(2):024904. PubMed ID: 28711045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations.
    Ladd AJ; Kekre R; Butler JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036704. PubMed ID: 19905243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.