These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28388112)

  • 21. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the lattice kinetic Monte Carlo method in systems with external fields.
    Lee YK; Sinno T
    J Chem Phys; 2016 Dec; 145(23):234104. PubMed ID: 28010081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations.
    Geyer T; Winter U
    J Chem Phys; 2009 Mar; 130(11):114905. PubMed ID: 19317564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotational Brownian dynamics simulations of clathrin cage formation.
    Ilie IM; den Otter WK; Briels WJ
    J Chem Phys; 2014 Aug; 141(6):065101. PubMed ID: 25134598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large scale Brownian dynamics of confined suspensions of rigid particles.
    Sprinkle B; Balboa Usabiaga F; Patankar NA; Donev A
    J Chem Phys; 2017 Dec; 147(24):244103. PubMed ID: 29289140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo and event-driven dynamics of Brownian particles with orientational degrees of freedom.
    Romano F; De Michele C; Marenduzzo D; Sanz E
    J Chem Phys; 2011 Sep; 135(12):124106. PubMed ID: 21974511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice-Boltzmann simulations of microswimmer-tracer interactions.
    de Graaf J; Stenhammar J
    Phys Rev E; 2017 Feb; 95(2-1):023302. PubMed ID: 28297968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerating Monte Carlo simulations of radiation therapy dose distributions using wavelet threshold de-noising.
    Deasy JO; Wickerhauser MV; Picard M
    Med Phys; 2002 Oct; 29(10):2366-73. PubMed ID: 12408311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix.
    Palanisamy D; den Otter WK
    J Chem Phys; 2018 May; 148(19):194112. PubMed ID: 30307211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformationally averaged iterative Brownian dynamics simulations of semidilute polymer solutions.
    Young CD; Marvin M; Sing CE
    J Chem Phys; 2018 Nov; 149(17):174904. PubMed ID: 30408996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear electro-osmosis of dilute non-adsorbing polymer solutions with low ionic strength.
    Uematsu Y
    Soft Matter; 2015 Oct; 11(37):7402-11. PubMed ID: 26274546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active Brownian filaments with hydrodynamic interactions: conformations and dynamics.
    Martín-Gómez A; Eisenstecken T; Gompper G; Winkler RG
    Soft Matter; 2019 May; 15(19):3957-3969. PubMed ID: 31012481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: algorithm and limitations.
    Ando T; Chow E; Skolnick J
    J Chem Phys; 2013 Sep; 139(12):121922. PubMed ID: 24089734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Rotne-Prager-Yamakawa approximation for periodic systems in a shear flow.
    Mizerski KA; Wajnryb E; Zuk PJ; Szymczak P
    J Chem Phys; 2014 May; 140(18):184103. PubMed ID: 24832249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides A Fast But Still Accurate Treatment Of Hydrodynamic Interactions In Brownian Dynamics Simulations Of Biological Macromolecules.
    Tworek JW; Elcock AH
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.
    Di Staso G; Clercx HJ; Succi S; Toschi F
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Krylov subspace methods for computing hydrodynamic interactions in brownian dynamics simulations.
    Ando T; Chow E; Saad Y; Skolnick J
    J Chem Phys; 2012 Aug; 137(6):064106. PubMed ID: 22897254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamics of polymers in an active bath.
    Martin-Gomez A; Eisenstecken T; Gompper G; Winkler RG
    Phys Rev E; 2020 May; 101(5-1):052612. PubMed ID: 32575238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generalized Rotne-Prager-Yamakawa approximation for Brownian dynamics in shear flow in bounded, unbounded, and periodic domains.
    Cichocki B; Szymczak P; Żuk PJ
    J Chem Phys; 2021 Mar; 154(12):124905. PubMed ID: 33810690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.