These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28388121)

  • 1. Kinetic energy partition method applied to ground state helium-like atoms.
    Chen YH; Chao SD
    J Chem Phys; 2017 Mar; 146(12):124120. PubMed ID: 28388121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.
    King AW; Baskerville AL; Cox H
    Philos Trans A Math Phys Eng Sci; 2018 Mar; 376(2115):. PubMed ID: 29431681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.
    Bischoff FA; Harrison RJ; Valeev EF
    J Chem Phys; 2012 Sep; 137(10):104103. PubMed ID: 22979846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantal density functional theory of the hydrogen molecule.
    Pan XY; Sahni V
    J Chem Phys; 2004 Mar; 120(12):5642-9. PubMed ID: 15267441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114105. PubMed ID: 30243277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function.
    Nakatsuji H; Nakashima H; Kurokawa Y; Ishikawa A
    Phys Rev Lett; 2007 Dec; 99(24):240402. PubMed ID: 18233425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local effective potential theory: nonuniqueness of potential and wave function.
    Sahni V; Slamet M; Pan XY
    J Chem Phys; 2007 May; 126(20):204106. PubMed ID: 17552753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated electron dynamics with time-dependent quantum Monte Carlo: three-dimensional helium.
    Christov IP
    J Chem Phys; 2011 Jul; 135(4):044120. PubMed ID: 21806103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supersymmetric quantum mechanics, excited state energies and wave functions, and the Rayleigh-Ritz variational principle: a proof of principle study.
    Kouri DJ; Markovich T; Maxwell N; Bittner ER
    J Phys Chem A; 2009 Dec; 113(52):15257-64. PubMed ID: 19863127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-fermion representation of quantum kinetic equations for the electron transport problem.
    Dzhioev AA; Kosov DS
    J Chem Phys; 2011 Jan; 134(4):044121. PubMed ID: 21280701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A grid-based variational method to the solution of the Schrödinger equation: the q-exponential and the near Hartree-Fock results for the ground state atomic energies.
    Custodio R; de Souza Tavares de Morais G; Rodrigues MG
    J Mol Model; 2018 Jul; 24(7):188. PubMed ID: 29968002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method.
    Wilson AL; Popelier PL
    J Phys Chem A; 2016 Dec; 120(48):9647-9659. PubMed ID: 27933917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features.
    Nakatsuji H; Nakashima H
    J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2008 Aug; 10(30):4486-94. PubMed ID: 18654690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the Schrödinger equation of atoms and molecules with the free-complement chemical-formula theory: First-row atoms and small molecules.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114106. PubMed ID: 30243284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling in the correlation energies of two-dimensional artificial atoms.
    Odriazola A; Ervasti MM; Makkonen I; Delgado A; González A; Räsänen E; Harju A
    J Phys Condens Matter; 2013 Dec; 25(50):505504. PubMed ID: 24275597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic theory of nuclear fission: a review.
    Schunck N; Robledo LM
    Rep Prog Phys; 2016 Nov; 79(11):116301. PubMed ID: 27727148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.