BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28388164)

  • 1. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
    Fiore AM; Swan JW
    J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D; Fluerasu A; Moussaïd A; Zontone F; Cristofolini L; Madsen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011402. PubMed ID: 22400568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles.
    Kutteh R
    J Chem Phys; 2010 May; 132(17):174107. PubMed ID: 20459156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic properties of rigid fractal aggregates of arbitrary morphology.
    Harshe YM; Ehrl L; Lattuada M
    J Colloid Interface Sci; 2010 Dec; 352(1):87-98. PubMed ID: 20832075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal modes of weak colloidal gels.
    Varga Z; Swan JW
    Phys Rev E; 2018 Jan; 97(1-1):012608. PubMed ID: 29448322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating Brownian suspensions with fluctuating hydrodynamics.
    Delmotte B; Keaveny EE
    J Chem Phys; 2015 Dec; 143(24):244109. PubMed ID: 26723653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions.
    Butler JE; Shaqfeh ES
    J Chem Phys; 2005 Jan; 122(1):14901. PubMed ID: 15638694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The raspberry model for hydrodynamic interactions revisited. I. Periodic arrays of spheres and dumbbells.
    Fischer LP; Peter T; Holm C; de Graaf J
    J Chem Phys; 2015 Aug; 143(8):084107. PubMed ID: 26328818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-time diffusion in concentrated bidisperse hard-sphere suspensions.
    Wang M; Heinen M; Brady JF
    J Chem Phys; 2015 Feb; 142(6):064905. PubMed ID: 25681941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transverse gradient diffusion in a polydisperse dilute suspension of magnetic spheres during sedimentation.
    Cunha FR; Couto HL
    J Phys Condens Matter; 2008 May; 20(20):204129. PubMed ID: 21694258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian dynamics method for simulation of binding kinetics of patterned colloidal spheres with hydrodynamic interactions.
    Liu J; Larson RG
    J Chem Phys; 2013 May; 138(17):174904. PubMed ID: 23656156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing the Discrete Element Method for the Modeling of Viscosity in Concentrated Suspensions.
    Kroupa M; Vonka M; Soos M; Kosek J
    Langmuir; 2016 Aug; 32(33):8451-60. PubMed ID: 27479150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics.
    Seto R; Botet R; Briesen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041405. PubMed ID: 22181144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres.
    Banchio AJ; Nägele G
    J Chem Phys; 2008 Mar; 128(10):104903. PubMed ID: 18345924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic interactions in metal rodlike-particle suspensions due to induced charge electroosmosis.
    Rose KA; Hoffman B; Saintillan D; Shaqfeh ES; Santiago JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011402. PubMed ID: 19257030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.