These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28388297)

  • 1. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.
    Nam S
    OMICS; 2017 Apr; 21(4):217-224. PubMed ID: 28388297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Co-Expression Analyses Allow the Identification of Critical Signalling Pathways Altered during Tumour Transformation and Progression.
    Savino A; Provero P; Poli V
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatics analysis with graph-based clustering to detect gastric cancer-related pathways.
    Liu P; Wang X; Hu CH; Hu TH
    Genet Mol Res; 2012 Sep; 11(3):3497-504. PubMed ID: 23079843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research.
    Li J; Li YX; Li YY
    Biomed Res Int; 2016; 2016():4241293. PubMed ID: 27597964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles.
    Yu Z; Chen H; You J; Wong HS; Liu J; Li L; Han G
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):727-40. PubMed ID: 26356343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data.
    Chen BS; Li CW
    BMC Syst Biol; 2016 Feb; 10():18. PubMed ID: 26897165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma.
    Zhang X; Peng Y; Jin Z; Huang W; Cheng Y; Liu Y; Feng X; Yang M; Huang Y; Zhao Z; Wang L; Wei Y; Fan X; Zheng D; Meltzer SJ
    Oncotarget; 2015 Oct; 6(32):32878-89. PubMed ID: 26460735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Master Transcriptional Regulators in Cancer: Discovery via Reverse Engineering Approaches and Subsequent Validation.
    Moran B; Rahman A; Palonen K; Lanigan FT; Gallagher WM
    Cancer Res; 2017 May; 77(9):2186-2190. PubMed ID: 28428271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A network biology workflow to study transcriptomics data of the diabetic liver.
    Kutmon M; Evelo CT; Coort SL
    BMC Genomics; 2014 Nov; 15(1):971. PubMed ID: 25399255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From time-series transcriptomics to gene regulatory networks: A review on inference methods.
    Marku M; Pancaldi V
    PLoS Comput Biol; 2023 Aug; 19(8):e1011254. PubMed ID: 37561790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis.
    Wu L; Liu Z; Xu J; Chen M; Fang H; Tong W; Xiao W
    Biomark Med; 2015; 9(11):1053-65. PubMed ID: 26501477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of differential network analysis methods.
    Lichtblau Y; Zimmermann K; Haldemann B; Lenze D; Hummel M; Leser U
    Brief Bioinform; 2017 Sep; 18(5):837-850. PubMed ID: 27473063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding gastric cancer related genes and clinical biomarkers for detection based on gene-gene interaction network.
    Wu X; Tang H; Guan A; Sun F; Wang H; Shu J
    Math Biosci; 2016 Jun; 276():1-7. PubMed ID: 26700107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systems biology approach to detect key pathways and interaction networks in gastric cancer on the basis of microarray analysis.
    Guo L; Song C; Wang P; Dai L; Zhang J; Wang K
    Mol Med Rep; 2015 Nov; 12(5):7139-45. PubMed ID: 26324226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Heterogeneous Datasets for Cancer Module Identification.
    Azad AK
    Methods Mol Biol; 2017; 1526():119-137. PubMed ID: 27896739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.
    Dey-Rao R; Sinha AA
    BMC Genomics; 2017 Jan; 18(1):109. PubMed ID: 28129744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.