These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28388530)

  • 1. Context-aware system for pre-triggering irreversible vehicle safety actuators.
    Böhmländer D; Dirndorfer T; Al-Bayatti AH; Brandmeier T
    Accid Anal Prev; 2017 Jun; 103():72-84. PubMed ID: 28388530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive target populations for current active safety systems using national crash databases.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15(7):753-61. PubMed ID: 24433115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LAVIA--an evaluation of the potential safety benefits of the French intelligent speed adaptation project.
    Driscoll R; Page Y; Lassarre S; Ehrlich J
    Annu Proc Assoc Adv Automot Med; 2007; 51():485-505. PubMed ID: 18184509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of pre-crash characteristics of passenger car to cyclist accidents for the development of advanced drivers assistance systems.
    Char F; Serre T
    Accid Anal Prev; 2020 Mar; 136():105408. PubMed ID: 31927453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.
    Cicchino JB; McCartt AT
    Traffic Inj Prev; 2015; 16():298-303. PubMed ID: 24983299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age and gender differences in time to collision at braking from the 100-Car Naturalistic Driving Study.
    Montgomery J; Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S15-20. PubMed ID: 25307380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterfactual simulations applied to SHRP2 crashes: The effect of driver behavior models on safety benefit estimations of intelligent safety systems.
    Bärgman J; Boda CN; Dozza M
    Accid Anal Prev; 2017 May; 102():165-180. PubMed ID: 28315616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Road safety from the perspective of driver gender and age as related to the injury crash frequency and road scenario.
    Russo F; Biancardo SA; Dell'Acqua G
    Traffic Inj Prev; 2014; 15(1):25-33. PubMed ID: 24279963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():59-65. PubMed ID: 27586104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of car crashes resulting in fatal and serious injuries to analyze a safe road transport system model and to identify system weaknesses.
    Stigson H; Hill J
    Traffic Inj Prev; 2009 Oct; 10(5):441-50. PubMed ID: 19746308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.
    Kaplan S; Prato CG
    Traffic Inj Prev; 2012; 13(3):315-26. PubMed ID: 22607255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volvo drivers' experiences with advanced crash avoidance and related technologies.
    Eichelberger AH; McCartt AT
    Traffic Inj Prev; 2014; 15(2):187-95. PubMed ID: 24345022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Road traffic accidents and self-reported Portuguese car driver's attitudes, behaviors, and opinions: Are they related?
    Bon de Sousa T; Santos C; Mateus C; Areal A; Trigoso J; Nunes C
    Traffic Inj Prev; 2016 Oct; 17(7):705-11. PubMed ID: 26889832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential occupant injury reduction in the U.S. vehicle fleet for lane departure warning-equipped vehicles in single-vehicle crashes.
    Kusano K; Gorman TI; Sherony R; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S157-64. PubMed ID: 25307382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crash probability estimation via quantifying driver hazard perception.
    Li Y; Zheng Y; Wang J; Kodaka K; Li K
    Accid Anal Prev; 2018 Jul; 116():116-125. PubMed ID: 28595973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Expected Crash and Injury Reduction from Production Forward Collision and Lane Departure Warning Systems.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S109-14. PubMed ID: 26436219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scenario establishment and characteristic analysis of intersection collision accidents for advanced driver assistance systems.
    Han I
    Traffic Inj Prev; 2020; 21(6):354-358. PubMed ID: 32401549
    [No Abstract]   [Full Text] [Related]  

  • 19. Driver injury severity outcome analysis in rural interstate highway crashes: a two-level Bayesian logistic regression interpretation.
    Chen C; Zhang G; Liu XC; Ci Y; Huang H; Ma J; Chen Y; Guan H
    Accid Anal Prev; 2016 Dec; 97():69-78. PubMed ID: 27591415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.
    Li Y; Li Z; Wang H; Wang W; Xing L
    Accid Anal Prev; 2017 Jul; 104():137-145. PubMed ID: 28500990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.