These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28389013)

  • 1. Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses.
    Mori H; Norisuye T; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2018 Feb; 83():171-178. PubMed ID: 28389013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy.
    Kubo K; Norisuye T; Tran TN; Shibata D; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2015 Sep; 62():186-94. PubMed ID: 26067926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound attenuation and phase velocity of moderately concentrated silica suspensions.
    Mori H; Norisuye T; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2019 Mar; 93():63-70. PubMed ID: 30408681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.
    Silva GT
    J Acoust Soc Am; 2014 Nov; 136(5):2405-13. PubMed ID: 25373943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic probing of the particle concentration in turbulent granular suspensions in air.
    van den Wildenberg S; Jia X; Roche O
    Sci Rep; 2020 Oct; 10(1):16544. PubMed ID: 33024148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium.
    Annamalai S; Balachandar S; Parmar MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical prediction of ultrasonic attenuation in concentrated emulsions and suspensions using Monte Carlo method.
    Huang B; Fan F; Li Y; Su M
    Ultrasonics; 2019 Apr; 94():218-226. PubMed ID: 30287073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of micron-sized particles in dilute and concentrated suspensions probed by dynamic ultrasound scattering techniques.
    Konno T; Norisuye T; Sugita K; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2016 Feb; 65():59-68. PubMed ID: 26547118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurements of ultrasound attenuation, phase velocity, thickness, and density spectra of polymeric sheets.
    Tsuji K; Norisuye T; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2019 Nov; 99():105974. PubMed ID: 31430702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective motion of microspheres in suspensions observed by phase-mode dynamic ultrasound scattering technique.
    Nagao A; Norisuye T; Yawada T; Kohyama M; Tran-Cong-Miyata Q
    Ultrasonics; 2012 Jul; 52(5):628-35. PubMed ID: 22297094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic ECAH: Scattering analysis of spherical particles in suspension with viscoelasticity.
    Tsuji K; Nakanishi H; Norisuye T
    Ultrasonics; 2021 Aug; 115():106463. PubMed ID: 34051490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydisperse particle size characterization by ultrasonic attenuation spectroscopy in the micrometer range.
    Richter A; Babick F; Stintz M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e483-90. PubMed ID: 16808945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
    Karlsen JT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043010. PubMed ID: 26565335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size distribution and elastic properties of thermo-responsive polymer gel microparticles in suspension probed by ultrasonic spectroscopy.
    Inoue T; Norisuye T; Sugita K; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2018 Jan; 82():31-38. PubMed ID: 28738253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling viscous boundary layer dissipation effects in liquid surrounding individual solid nano and micro-particles in an ultrasonic field.
    Forrester DM; Huang J; Pinfield VJ
    Sci Rep; 2019 Mar; 9(1):4956. PubMed ID: 30894589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound Study of Magnetic and Non-Magnetic Nanoparticle Agglomeration in High Viscous Media.
    Jameel B; Hornowski T; Bielas R; Józefczak A
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental study of the influence of the particle size distribution on acoustic wave properties of strongly inhomogeneous media.
    Vander Meulen F; Feuillard G; Matar OB; Levassort F; Lethiecq M
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2301-7. PubMed ID: 11757920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence criteria for scattering models of ultrasonic wave propagation in suspensions of particles.
    O'Neill TJ; Tebbutt JS; Challis RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):419-24. PubMed ID: 11370355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The absorption of ultrasound in emulsions: computational modelling of thermal effects.
    Forrester DM; Pinfield VJ
    Sci Rep; 2018 Aug; 8(1):12486. PubMed ID: 30131527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic microstreaming around an encapsulated particle.
    Doinikov AA; Bouakaz A
    J Acoust Soc Am; 2010 Mar; 127(3):1218-27. PubMed ID: 20329820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.