These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 28389041)
1. Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production. Jain P; Arora N; Mehtani J; Pruthi V; Majumder CB Bioresour Technol; 2017 Oct; 242():152-160. PubMed ID: 28389041 [TBL] [Abstract][Full Text] [Related]
2. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production. Bharte S; Desai K Environ Sci Pollut Res Int; 2019 Feb; 26(4):3492-3500. PubMed ID: 30519914 [TBL] [Abstract][Full Text] [Related]
3. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp. Vishwakarma R; Dhar DW; Saxena S Environ Sci Pollut Res Int; 2019 Mar; 26(8):7589-7600. PubMed ID: 30659489 [TBL] [Abstract][Full Text] [Related]
4. Bioprospecting microalgae from natural algal bloom for sustainable biomass and biodiesel production. Pandey MK; Dasgupta CN; Mishra S; Srivastava M; Gupta VK; Suseela MR; Ramteke PW Appl Microbiol Biotechnol; 2019 Jul; 103(13):5447-5458. PubMed ID: 31101944 [TBL] [Abstract][Full Text] [Related]
5. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer. Maurya R; Paliwal C; Chokshi K; Pancha I; Ghosh T; Satpati GG; Pal R; Ghosh A; Mishra S Bioresour Technol; 2016 May; 207():197-204. PubMed ID: 26890794 [TBL] [Abstract][Full Text] [Related]
8. Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima. Arora N; Patel A; Pruthi PA; Pruthi V Appl Biochem Biotechnol; 2016 Dec; 180(8):1534-1541. PubMed ID: 27465038 [TBL] [Abstract][Full Text] [Related]
9. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Chandra R; Amit ; Ghosh UK Environ Sci Pollut Res Int; 2019 Feb; 26(4):3848-3861. PubMed ID: 30539390 [TBL] [Abstract][Full Text] [Related]
10. Regulation effects of indoleacetic acid on lipid production and nutrient removal of Chlorella pyrenoidosa in seawater-containing wastewater. Zhou JL; Vadiveloo A; Chen DZ; Gao F Water Res; 2024 Jan; 248():120864. PubMed ID: 37979569 [TBL] [Abstract][Full Text] [Related]
11. Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications. Nayak M; Suh WI; Cho JM; Kim HS; Lee B; Chang YK J Environ Manage; 2020 Oct; 271():111041. PubMed ID: 32778320 [TBL] [Abstract][Full Text] [Related]
12. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
13. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
14. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207 [TBL] [Abstract][Full Text] [Related]
15. [Effects of Bacteria on the Growth of and Lipid Accumulation in Tu RJ; Jin WB; Han SF; Chen HY Huan Jing Ke Xue; 2017 Oct; 38(10):4279-4285. PubMed ID: 29965212 [TBL] [Abstract][Full Text] [Related]
17. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Zhao P; Yu X; Li J; Tang X; Huang Z J Biosci Bioeng; 2014 Jul; 118(1):72-7. PubMed ID: 24491914 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae. Sivaramakrishnan R; Incharoensakdi A J Phycol; 2017 Aug; 53(4):855-868. PubMed ID: 28523645 [TBL] [Abstract][Full Text] [Related]
19. Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source. Gour RS; Bairagi M; Garlapati VK; Kant A Bioengineered; 2018 Jan; 9(1):98-107. PubMed ID: 28471319 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Jena U; Vaidyanathan N; Chinnasamy S; Das KC Bioresour Technol; 2011 Feb; 102(3):3380-7. PubMed ID: 20970327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]