BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 28389544)

  • 1. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis.
    Li M; Zhang ZJ; Kong XD; Yu HL; Zhou J; Xu JH
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389544
    [No Abstract]   [Full Text] [Related]  

  • 2. Efficient biosynthesis of ethyl (R)-4-chloro-3-hydroxybutyrate using a stereoselective carbonyl reductase from Burkholderia gladioli.
    Chen X; Liu ZQ; Lin CP; Zheng YG
    BMC Biotechnol; 2016 Oct; 16(1):70. PubMed ID: 27756363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of ethyl (S)-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption.
    Chen LF; Fan HY; Zhang YP; Wei W; Lin JP; Wei DZ; Wang HL
    J Biotechnol; 2017 Jun; 251():68-75. PubMed ID: 28427921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of optically pure chiral alcohols by a substrate coupled and biphasic system with a short-chain dehydrogenase from Streptomyces griseus.
    Tan Z; Ma H; Li Q; Pu L; Cao Y; Qu X; Zhu C; Ying H
    Enzyme Microb Technol; 2016 Nov; 93-94():191-199. PubMed ID: 27702481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor.
    Wang LJ; Li CX; Ni Y; Zhang J; Liu X; Xu JH
    Bioresour Technol; 2011 Jul; 102(14):7023-8. PubMed ID: 21570826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.
    Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY
    J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20.
    Zhao FJ; Pei XQ; Ren ZQ; Wu ZL
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3567-75. PubMed ID: 26658823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space-time yield.
    You ZY; Liu ZQ; Zheng YG
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1671-80. PubMed ID: 23793261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.
    Fukuda Y; Sakuraba H; Araki T; Ohshima T; Yoneda K
    Enzyme Microb Technol; 2016 Sep; 91():17-25. PubMed ID: 27444325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Expanded Small Alkyl-Binding Pocket by Triple Point Mutations on Substrate Specificity of Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase.
    Dwamena A; Phillips R; Kim CS
    J Microbiol Biotechnol; 2019 Mar; 29(3):373-381. PubMed ID: 30609883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate.
    Cao H; Mi L; Ye Q; Zang G; Yan M; Wang Y; Zhang Y; Li X; Xu L; Xiong J; Ouyang P; Ying H
    Bioresour Technol; 2011 Jan; 102(2):1733-9. PubMed ID: 20933386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by NADH-dependent reductase from E. coli CCZU-Y10 discovered by genome data mining using mannitol as cosubstrate.
    He YC; Yang ZX; Zhang DP; Tao ZC; Chen C; Chen YT; Guo F; Xu JH; Huang L; Chen RJ; Ma XF
    Appl Biochem Biotechnol; 2014 Aug; 173(8):2042-53. PubMed ID: 24880894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Leifsonia Alcohol Dehydrogenase for Thermostability and Catalytic Efficiency by Enhancing Subunit Interactions.
    Zhu L; Song Y; Chang C; Ma H; Yang L; Deng Z; Deng W; Qu X
    Chembiochem; 2021 Nov; 22(22):3178-3183. PubMed ID: 34549865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate and its derivatives by a robust NADH-dependent reductase from E. coli CCZU-K14.
    He YC; Tao ZC; Zhang X; Yang ZX; Xu JH
    Bioresour Technol; 2014 Jun; 161():461-4. PubMed ID: 24745897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity.
    Asako H; Shimizu M; Itoh N
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):805-12. PubMed ID: 18626639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system.
    Liu ZQ; Ye JJ; Shen ZY; Hong HB; Yan JB; Lin Y; Chen ZX; Zheng YG; Shen YC
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2119-29. PubMed ID: 25487888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2).
    Prins A; Kleinsmidt L; Khan N; Kirby B; Kudanga T; Vollmer J; Pleiss J; Burton S; Le Roes-Hill M
    Enzyme Microb Technol; 2015 Jan; 68():23-32. PubMed ID: 25435502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review-biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives.
    Ye Q; Ouyang P; Ying H
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):513-22. PubMed ID: 20957354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuated substrate inhibition of a haloketone reductase via structure-guided loop engineering.
    Shang YP; Chen Q; Li AT; Quan S; Xu JH; Yu HL
    J Biotechnol; 2020 Jan; 308():141-147. PubMed ID: 31866427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric synthesis of D-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol.
    Gerstenbruch S; Wulf H; Mussmann N; O'Connell T; Maurer KH; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1243-52. PubMed ID: 22290646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.